用于加压修井的自降解凝胶临时堵漏剂性能评估

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Deji Liu, Chao Chen, Xiaohui Li, Ying Wang, Li Cheng, Shoumin Sun, Jiayi Tan
{"title":"用于加压修井的自降解凝胶临时堵漏剂性能评估","authors":"Deji Liu,&nbsp;Chao Chen,&nbsp;Xiaohui Li,&nbsp;Ying Wang,&nbsp;Li Cheng,&nbsp;Shoumin Sun,&nbsp;Jiayi Tan","doi":"10.1002/ese3.2031","DOIUrl":null,"url":null,"abstract":"<p>Band pressure operation has become the main way of oil and gas well workover in the world, to solve the gel breaking problem in the gel plugging pressure technology, acrylamide and ester-based cross-linking agent UCL-1 were used to synthesize a self-degradable gel that can be used at 40°C–60°C by the one-pot method. The cross-linking reaction principle of the gel was analyzed by infrared spectroscopy; in addition, the degradation performance of the gel and the effects of acrylamide, UCL-1, initiator and metal ions on the degradation performance of the gel as well as the influence law were investigated; finally, sand-filled tubing and casing were used to simulate the stratigraphy and the wellbore, respectively, thus evaluating the sealing performance of the gel. The results showed that the cross-linking reaction of the gel was a double-bond copolymerization reaction; the viscosity of the gel after complete degradation in the range of 40°C–60°C was 51–450 mPa-s, and the degradation time was 115–220 h, and the degradation time of the gel could be adjusted by changing the formulation components and the mineralization degree; moreover, the pressure-bearing capacity of the gel in the formation at 40°C–60°C was 8.5–14.9 MPa, and the pressure-bearing capacity of gel in wellbore is 52–73 kPa, and the blocking time is 3–6 d, which meets the construction time requirement of pressurized operation. This study extends the breaking method of gel plugging pressure technology and further promotes the development and application of pressure work technology.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 4","pages":"1555-1566"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2031","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Self-Degradable Gel Temporary Plugging Agents for Pressurized Workover\",\"authors\":\"Deji Liu,&nbsp;Chao Chen,&nbsp;Xiaohui Li,&nbsp;Ying Wang,&nbsp;Li Cheng,&nbsp;Shoumin Sun,&nbsp;Jiayi Tan\",\"doi\":\"10.1002/ese3.2031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Band pressure operation has become the main way of oil and gas well workover in the world, to solve the gel breaking problem in the gel plugging pressure technology, acrylamide and ester-based cross-linking agent UCL-1 were used to synthesize a self-degradable gel that can be used at 40°C–60°C by the one-pot method. The cross-linking reaction principle of the gel was analyzed by infrared spectroscopy; in addition, the degradation performance of the gel and the effects of acrylamide, UCL-1, initiator and metal ions on the degradation performance of the gel as well as the influence law were investigated; finally, sand-filled tubing and casing were used to simulate the stratigraphy and the wellbore, respectively, thus evaluating the sealing performance of the gel. The results showed that the cross-linking reaction of the gel was a double-bond copolymerization reaction; the viscosity of the gel after complete degradation in the range of 40°C–60°C was 51–450 mPa-s, and the degradation time was 115–220 h, and the degradation time of the gel could be adjusted by changing the formulation components and the mineralization degree; moreover, the pressure-bearing capacity of the gel in the formation at 40°C–60°C was 8.5–14.9 MPa, and the pressure-bearing capacity of gel in wellbore is 52–73 kPa, and the blocking time is 3–6 d, which meets the construction time requirement of pressurized operation. This study extends the breaking method of gel plugging pressure technology and further promotes the development and application of pressure work technology.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 4\",\"pages\":\"1555-1566\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2031\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

带压作业已成为国际上油气井修井的主要方式,为解决胶塞压力技术中的破胶问题,利用丙烯酰胺和酯基交联剂UCL-1,采用一锅法合成了可在40℃- 60℃使用的自降解凝胶。用红外光谱分析了凝胶的交联反应原理;考察了丙烯酰胺、UCL-1、引发剂和金属离子对凝胶降解性能的影响及影响规律;最后,利用填砂油管和套管分别模拟地层和井筒,从而评价凝胶的密封性能。结果表明,凝胶的交联反应为双键共聚反应;凝胶在40℃~ 60℃范围内完全降解后的粘度为51 ~ 450 mPa-s,降解时间为115 ~ 220 h,通过改变配方成分和矿化程度可调节凝胶的降解时间;40℃~ 60℃地层中凝胶的承压能力为8.5 ~ 14.9 MPa,井筒中凝胶的承压能力为52 ~ 73 kPa,封堵时间为3 ~ 6 d,满足加压作业的施工时间要求。本研究拓展了凝胶封堵压力技术的突破方法,进一步促进了压力工作技术的发展和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance Evaluation of Self-Degradable Gel Temporary Plugging Agents for Pressurized Workover

Performance Evaluation of Self-Degradable Gel Temporary Plugging Agents for Pressurized Workover

Band pressure operation has become the main way of oil and gas well workover in the world, to solve the gel breaking problem in the gel plugging pressure technology, acrylamide and ester-based cross-linking agent UCL-1 were used to synthesize a self-degradable gel that can be used at 40°C–60°C by the one-pot method. The cross-linking reaction principle of the gel was analyzed by infrared spectroscopy; in addition, the degradation performance of the gel and the effects of acrylamide, UCL-1, initiator and metal ions on the degradation performance of the gel as well as the influence law were investigated; finally, sand-filled tubing and casing were used to simulate the stratigraphy and the wellbore, respectively, thus evaluating the sealing performance of the gel. The results showed that the cross-linking reaction of the gel was a double-bond copolymerization reaction; the viscosity of the gel after complete degradation in the range of 40°C–60°C was 51–450 mPa-s, and the degradation time was 115–220 h, and the degradation time of the gel could be adjusted by changing the formulation components and the mineralization degree; moreover, the pressure-bearing capacity of the gel in the formation at 40°C–60°C was 8.5–14.9 MPa, and the pressure-bearing capacity of gel in wellbore is 52–73 kPa, and the blocking time is 3–6 d, which meets the construction time requirement of pressurized operation. This study extends the breaking method of gel plugging pressure technology and further promotes the development and application of pressure work technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信