{"title":"太湖藻类有机质降解过程中附着与游离微生物群落的演替","authors":"Jing Chen, Yongqiang Zhou, Yunlin Zhang, Quanzhong Guo, Shulan Zhang, Guanghuan Ge, Wenting Jin","doi":"10.1111/1758-2229.70094","DOIUrl":null,"url":null,"abstract":"<p>Decomposition of Cyanobacterial blooms frequently occurs in Lake Taihu, releasing various fractions of algal organic matter into the water through cell lysis. These fractions influence the production and consumption of dissolved organic matter, nutrient dynamics, and bacterial succession in the lake. However, the interactions between free-living and particle-attached bacterial communities with different algal organic matter fractions remain poorly understood. Herein, we investigated the effects of two distinct algal organic matter fractions, obtained through a fractionation procedure simulating cyanobacterial bloom collapse, on freshwater bacterial communities. The degradation of both fractions resulted in stage-specific changes in the chemical properties of lake water, which were divided into two distinct stages (labeled Stage I and Stage II). <i>Flavobacteriaceae</i> was dominant in Stage I, whereas <i>Methylophilaceae</i> dominated Stage II. Long-term ecological observations indicated that particle-attached bacteria responded more sensitively to different algal organic matter fractions than free-living bacteria. Compared to the degradation of algal-derived filtrate, the breakdown of algal residual exudative organic matter led to a more complex free-living bacterial community network. These findings provide new insights into the capacity of free-living and particle-attached bacterial communities to utilize different algal organic matter fractions and highlight their roles in aquatic ecosystems during the post-bloom stage.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70094","citationCount":"0","resultStr":"{\"title\":\"Succession of Particle-Attached and Free-Living Microbial Communities in Response to the Degradation of Algal Organic Matter in Lake Taihu, China\",\"authors\":\"Jing Chen, Yongqiang Zhou, Yunlin Zhang, Quanzhong Guo, Shulan Zhang, Guanghuan Ge, Wenting Jin\",\"doi\":\"10.1111/1758-2229.70094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Decomposition of Cyanobacterial blooms frequently occurs in Lake Taihu, releasing various fractions of algal organic matter into the water through cell lysis. These fractions influence the production and consumption of dissolved organic matter, nutrient dynamics, and bacterial succession in the lake. However, the interactions between free-living and particle-attached bacterial communities with different algal organic matter fractions remain poorly understood. Herein, we investigated the effects of two distinct algal organic matter fractions, obtained through a fractionation procedure simulating cyanobacterial bloom collapse, on freshwater bacterial communities. The degradation of both fractions resulted in stage-specific changes in the chemical properties of lake water, which were divided into two distinct stages (labeled Stage I and Stage II). <i>Flavobacteriaceae</i> was dominant in Stage I, whereas <i>Methylophilaceae</i> dominated Stage II. Long-term ecological observations indicated that particle-attached bacteria responded more sensitively to different algal organic matter fractions than free-living bacteria. Compared to the degradation of algal-derived filtrate, the breakdown of algal residual exudative organic matter led to a more complex free-living bacterial community network. These findings provide new insights into the capacity of free-living and particle-attached bacterial communities to utilize different algal organic matter fractions and highlight their roles in aquatic ecosystems during the post-bloom stage.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70094\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70094","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Succession of Particle-Attached and Free-Living Microbial Communities in Response to the Degradation of Algal Organic Matter in Lake Taihu, China
Decomposition of Cyanobacterial blooms frequently occurs in Lake Taihu, releasing various fractions of algal organic matter into the water through cell lysis. These fractions influence the production and consumption of dissolved organic matter, nutrient dynamics, and bacterial succession in the lake. However, the interactions between free-living and particle-attached bacterial communities with different algal organic matter fractions remain poorly understood. Herein, we investigated the effects of two distinct algal organic matter fractions, obtained through a fractionation procedure simulating cyanobacterial bloom collapse, on freshwater bacterial communities. The degradation of both fractions resulted in stage-specific changes in the chemical properties of lake water, which were divided into two distinct stages (labeled Stage I and Stage II). Flavobacteriaceae was dominant in Stage I, whereas Methylophilaceae dominated Stage II. Long-term ecological observations indicated that particle-attached bacteria responded more sensitively to different algal organic matter fractions than free-living bacteria. Compared to the degradation of algal-derived filtrate, the breakdown of algal residual exudative organic matter led to a more complex free-living bacterial community network. These findings provide new insights into the capacity of free-living and particle-attached bacterial communities to utilize different algal organic matter fractions and highlight their roles in aquatic ecosystems during the post-bloom stage.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.