激光生成纳米铱修饰硼掺杂硅超声沉积制备PEM水电解OER电极

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Norbert Kazamer, Meike Tack, Mathias Spree, Martin Underberg, Ulrich Rost, Sven Reichenberger, Maximilian Cieluch, Haujin Salih, Florian Wirkert, Leonard Böhm, Jeffrey Roth, Varatharaja Nallathambi, Baptiste Gault, Christoph Baer, Kerstin Orend, Stephan Barcikowski, Tim Hülser, Michael Brodmann
{"title":"激光生成纳米铱修饰硼掺杂硅超声沉积制备PEM水电解OER电极","authors":"Norbert Kazamer,&nbsp;Meike Tack,&nbsp;Mathias Spree,&nbsp;Martin Underberg,&nbsp;Ulrich Rost,&nbsp;Sven Reichenberger,&nbsp;Maximilian Cieluch,&nbsp;Haujin Salih,&nbsp;Florian Wirkert,&nbsp;Leonard Böhm,&nbsp;Jeffrey Roth,&nbsp;Varatharaja Nallathambi,&nbsp;Baptiste Gault,&nbsp;Christoph Baer,&nbsp;Kerstin Orend,&nbsp;Stephan Barcikowski,&nbsp;Tim Hülser,&nbsp;Michael Brodmann","doi":"10.1002/admi.202400765","DOIUrl":null,"url":null,"abstract":"<p>The study introduces flexible and scalable manufacturing approach for electrodes utilizing boron-doped silicon as conductive support for iridium nanoparticles, addressing the challenges of cost and scarcity associated wit noble catalysts for oxygen evolution reaction (OER). Colloidal Ir nanoparticles are synthesized via pulsed-laser ablation (≈4–7 nm) and decorated on B-doped Si (≈100 nm) through electrostatic adsorption. Titanium substrates are ultrasonically sprayed with Si:B – Ir and Ir nanoparticles with very low iridium loading of 12 wt.%. Crystalline Ir phases (Ir(111), Ir(200)) are observed and known to enhance the OER mechanism. Additionally, atom probe tomography confirms that the Si support particles contained 0.03-0.5 at% of boron throughout the entire particle, while electrical permittivity and through-plane measurements reveal a positive impact of B-doped Si on the electrical conductivity of the nanocatalysts and of the ultralow-loaded catalyst coated Ti substrates (0.12 mg<sub>Ir</sub> cm<sup>−2</sup>), respectively. Rotating disk electrode results show pronounced oxidation peaks for decorated Ir nanoparticles. The Si:B-Ir 4 nm catalyst exhibits the highest turonover frequency (2.62 s⁻¹) and a competitive electrochemical surface area (25 m<sup>2</sup> g<sub>Ir</sub><sup>−1</sup>) compared to Si:B-Ir 7 nm (0.96 s⁻¹; 37.5 m<sup>2</sup> g<sub>Ir</sub><sup>−1</sup>) and Ir black (0.24 s⁻¹; 5 m<sup>2</sup> g<sub>Ir</sub><sup>−1</sup>). The overall analysis of the parameters highlights a performant catalytic efficiency, through balancing activity and reaction kinetics effectively.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400765","citationCount":"0","resultStr":"{\"title\":\"Ultrasonically Deposited Boron-Doped Silicon Decorated with Laser-Generated Iridium Nanoparticles as Manufacturing Approach for OER Electrodes in PEM Water Electrolysis\",\"authors\":\"Norbert Kazamer,&nbsp;Meike Tack,&nbsp;Mathias Spree,&nbsp;Martin Underberg,&nbsp;Ulrich Rost,&nbsp;Sven Reichenberger,&nbsp;Maximilian Cieluch,&nbsp;Haujin Salih,&nbsp;Florian Wirkert,&nbsp;Leonard Böhm,&nbsp;Jeffrey Roth,&nbsp;Varatharaja Nallathambi,&nbsp;Baptiste Gault,&nbsp;Christoph Baer,&nbsp;Kerstin Orend,&nbsp;Stephan Barcikowski,&nbsp;Tim Hülser,&nbsp;Michael Brodmann\",\"doi\":\"10.1002/admi.202400765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study introduces flexible and scalable manufacturing approach for electrodes utilizing boron-doped silicon as conductive support for iridium nanoparticles, addressing the challenges of cost and scarcity associated wit noble catalysts for oxygen evolution reaction (OER). Colloidal Ir nanoparticles are synthesized via pulsed-laser ablation (≈4–7 nm) and decorated on B-doped Si (≈100 nm) through electrostatic adsorption. Titanium substrates are ultrasonically sprayed with Si:B – Ir and Ir nanoparticles with very low iridium loading of 12 wt.%. Crystalline Ir phases (Ir(111), Ir(200)) are observed and known to enhance the OER mechanism. Additionally, atom probe tomography confirms that the Si support particles contained 0.03-0.5 at% of boron throughout the entire particle, while electrical permittivity and through-plane measurements reveal a positive impact of B-doped Si on the electrical conductivity of the nanocatalysts and of the ultralow-loaded catalyst coated Ti substrates (0.12 mg<sub>Ir</sub> cm<sup>−2</sup>), respectively. Rotating disk electrode results show pronounced oxidation peaks for decorated Ir nanoparticles. The Si:B-Ir 4 nm catalyst exhibits the highest turonover frequency (2.62 s⁻¹) and a competitive electrochemical surface area (25 m<sup>2</sup> g<sub>Ir</sub><sup>−1</sup>) compared to Si:B-Ir 7 nm (0.96 s⁻¹; 37.5 m<sup>2</sup> g<sub>Ir</sub><sup>−1</sup>) and Ir black (0.24 s⁻¹; 5 m<sup>2</sup> g<sub>Ir</sub><sup>−1</sup>). The overall analysis of the parameters highlights a performant catalytic efficiency, through balancing activity and reaction kinetics effectively.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400765\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400765\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400765","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究引入了灵活且可扩展的电极制造方法,利用掺硼硅作为铱纳米颗粒的导电支撑,解决了与析氧反应(OER)的稀有催化剂相关的成本和稀缺性挑战。通过脉冲激光烧蚀(≈4-7 nm)合成了胶体Ir纳米粒子,并通过静电吸附在掺杂b的Si(≈100 nm)上进行修饰。在钛基板上超声喷涂硅:B - Ir和Ir纳米颗粒,其铱含量极低,为12 wt.%。观察到晶体Ir相(Ir(111), Ir(200))可以增强OER机制。此外,原子探针断层扫描证实,硅载体颗粒在整个颗粒中含有0.03-0.5 %的硼,而介电常数和通过面测量显示,掺杂b的硅对纳米催化剂的电导率和超低负载催化剂涂层Ti衬底(0.12 mgIr cm - 2)的电导率有积极影响。旋转圆盘电极结果显示,修饰后的Ir纳米颗粒有明显的氧化峰。与Si:B-Ir 7 nm (0.96 s⁻¹)相比,Si:B-Ir 4 nm催化剂表现出最高的周转频率(2.62 s⁻¹)和竞争性的电化学表面积(25 m2 gIr−1);37.5 m2 gIr−1)和Ir black (0.24 s⁻¹;5m2 gIr−1)。通过有效地平衡活性和反应动力学,对参数进行了综合分析,突出了高性能的催化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrasonically Deposited Boron-Doped Silicon Decorated with Laser-Generated Iridium Nanoparticles as Manufacturing Approach for OER Electrodes in PEM Water Electrolysis

Ultrasonically Deposited Boron-Doped Silicon Decorated with Laser-Generated Iridium Nanoparticles as Manufacturing Approach for OER Electrodes in PEM Water Electrolysis

The study introduces flexible and scalable manufacturing approach for electrodes utilizing boron-doped silicon as conductive support for iridium nanoparticles, addressing the challenges of cost and scarcity associated wit noble catalysts for oxygen evolution reaction (OER). Colloidal Ir nanoparticles are synthesized via pulsed-laser ablation (≈4–7 nm) and decorated on B-doped Si (≈100 nm) through electrostatic adsorption. Titanium substrates are ultrasonically sprayed with Si:B – Ir and Ir nanoparticles with very low iridium loading of 12 wt.%. Crystalline Ir phases (Ir(111), Ir(200)) are observed and known to enhance the OER mechanism. Additionally, atom probe tomography confirms that the Si support particles contained 0.03-0.5 at% of boron throughout the entire particle, while electrical permittivity and through-plane measurements reveal a positive impact of B-doped Si on the electrical conductivity of the nanocatalysts and of the ultralow-loaded catalyst coated Ti substrates (0.12 mgIr cm−2), respectively. Rotating disk electrode results show pronounced oxidation peaks for decorated Ir nanoparticles. The Si:B-Ir 4 nm catalyst exhibits the highest turonover frequency (2.62 s⁻¹) and a competitive electrochemical surface area (25 m2 gIr−1) compared to Si:B-Ir 7 nm (0.96 s⁻¹; 37.5 m2 gIr−1) and Ir black (0.24 s⁻¹; 5 m2 gIr−1). The overall analysis of the parameters highlights a performant catalytic efficiency, through balancing activity and reaction kinetics effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信