基于测井曲线二次标度范围分析的致密砂岩不同类型天然裂缝预测方法——以鄂尔多斯盆地华庆油田长7段为例

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Zikang Xiao, Wenlong Ding, Arash Dahi Taleghani, Liu Jingshou, Chong Xu, Huiran Gao, Wenwen Qi, Xiangli He
{"title":"基于测井曲线二次标度范围分析的致密砂岩不同类型天然裂缝预测方法——以鄂尔多斯盆地华庆油田长7段为例","authors":"Zikang Xiao,&nbsp;Wenlong Ding,&nbsp;Arash Dahi Taleghani,&nbsp;Liu Jingshou,&nbsp;Chong Xu,&nbsp;Huiran Gao,&nbsp;Wenwen Qi,&nbsp;Xiangli He","doi":"10.1002/ese3.70034","DOIUrl":null,"url":null,"abstract":"<p>Currently, there are various methods for predicting natural fractures using logging data, however these methods are primarily for predicting the number and location of fractures. This is making it difficult to determine fracture types. This paper introduces the R/S-FD method, and combined with the natural fracture development pattern in the study area, secondary R/S analysis was introduced to construct the Secondary R/S-FD method. This method overcomes the limitations of traditional R/S-FD methods that can only predict the location of fractures and cannot predict the type of fractures. After eliminating systematic errors, the prediction accuracy of the Secondary R/S-FD method for bedding fractures and high-angle fractures reaches 73% and 74%, respectively. By analyzing the fracture development characteristics of 23 wells in the study area, the research provided insights into the development characteristics of bedding fractures and high-angle fractures in oil layers within the region. The secondary R/S-FD method is a precise, fast, and cost-effective approach for predicting the development characteristics of different types of natural fractures. The next step involves leveraging a large number of fracture prediction cases as the data foundation, based on big data analysis and machine learning techniques, to establish a correlation between the F value and fracture type and number to enabling more accurate predictions of the types and quantities of natural fractures.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 4","pages":"2045-2062"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70034","citationCount":"0","resultStr":"{\"title\":\"A Method for Predicting Different Types of Natural Fractures in Tight Sandstone Based on the Secondary Rescaled Range Analysis of Logging Curves: A Case Study From the Chang 7 Member in Huaqing Oilfield, Ordos Basin, China\",\"authors\":\"Zikang Xiao,&nbsp;Wenlong Ding,&nbsp;Arash Dahi Taleghani,&nbsp;Liu Jingshou,&nbsp;Chong Xu,&nbsp;Huiran Gao,&nbsp;Wenwen Qi,&nbsp;Xiangli He\",\"doi\":\"10.1002/ese3.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, there are various methods for predicting natural fractures using logging data, however these methods are primarily for predicting the number and location of fractures. This is making it difficult to determine fracture types. This paper introduces the R/S-FD method, and combined with the natural fracture development pattern in the study area, secondary R/S analysis was introduced to construct the Secondary R/S-FD method. This method overcomes the limitations of traditional R/S-FD methods that can only predict the location of fractures and cannot predict the type of fractures. After eliminating systematic errors, the prediction accuracy of the Secondary R/S-FD method for bedding fractures and high-angle fractures reaches 73% and 74%, respectively. By analyzing the fracture development characteristics of 23 wells in the study area, the research provided insights into the development characteristics of bedding fractures and high-angle fractures in oil layers within the region. The secondary R/S-FD method is a precise, fast, and cost-effective approach for predicting the development characteristics of different types of natural fractures. The next step involves leveraging a large number of fracture prediction cases as the data foundation, based on big data analysis and machine learning techniques, to establish a correlation between the F value and fracture type and number to enabling more accurate predictions of the types and quantities of natural fractures.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 4\",\"pages\":\"2045-2062\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70034\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70034","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

目前,利用测井资料预测天然裂缝的方法多种多样,但这些方法主要是预测裂缝的数量和位置。这使得确定骨折类型变得困难。本文引入R/S- fd方法,结合研究区天然裂缝发育规律,引入二次R/S分析,构建二次R/S- fd方法。该方法克服了传统R/S-FD方法只能预测裂缝位置而不能预测裂缝类型的局限性。消除系统误差后,二次R/S-FD方法对层理裂缝和高角度裂缝的预测精度分别达到73%和74%。通过对研究区23口井裂缝发育特征的分析,了解了区内油层层理裂缝和高角度裂缝的发育特征。二次R/S-FD方法是预测不同类型天然裂缝发育特征的一种精确、快速、经济的方法。下一步是利用大量裂缝预测案例作为数据基础,基于大数据分析和机器学习技术,建立F值与裂缝类型和数量之间的相关性,从而更准确地预测天然裂缝的类型和数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Method for Predicting Different Types of Natural Fractures in Tight Sandstone Based on the Secondary Rescaled Range Analysis of Logging Curves: A Case Study From the Chang 7 Member in Huaqing Oilfield, Ordos Basin, China

A Method for Predicting Different Types of Natural Fractures in Tight Sandstone Based on the Secondary Rescaled Range Analysis of Logging Curves: A Case Study From the Chang 7 Member in Huaqing Oilfield, Ordos Basin, China

Currently, there are various methods for predicting natural fractures using logging data, however these methods are primarily for predicting the number and location of fractures. This is making it difficult to determine fracture types. This paper introduces the R/S-FD method, and combined with the natural fracture development pattern in the study area, secondary R/S analysis was introduced to construct the Secondary R/S-FD method. This method overcomes the limitations of traditional R/S-FD methods that can only predict the location of fractures and cannot predict the type of fractures. After eliminating systematic errors, the prediction accuracy of the Secondary R/S-FD method for bedding fractures and high-angle fractures reaches 73% and 74%, respectively. By analyzing the fracture development characteristics of 23 wells in the study area, the research provided insights into the development characteristics of bedding fractures and high-angle fractures in oil layers within the region. The secondary R/S-FD method is a precise, fast, and cost-effective approach for predicting the development characteristics of different types of natural fractures. The next step involves leveraging a large number of fracture prediction cases as the data foundation, based on big data analysis and machine learning techniques, to establish a correlation between the F value and fracture type and number to enabling more accurate predictions of the types and quantities of natural fractures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信