随机环面映射的旋转熵

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Weifeng Jiang, Zhengxing Lian, Yujun Zhu
{"title":"随机环面映射的旋转熵","authors":"Weifeng Jiang,&nbsp;Zhengxing Lian,&nbsp;Yujun Zhu","doi":"10.1007/s10955-025-03443-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the rotational entropy <span>\\(h_r(\\varphi )\\)</span> is investigated for a random dynamical system <span>\\(\\varphi \\)</span> on the torus. The formula of <span>\\(h_r(\\varphi )\\)</span> is obtained for <span>\\(\\varphi \\)</span> which satisfies certain assumptions, and the lower and upper bounds of <span>\\(h_r(\\varphi )\\)</span> are given for more general <span>\\(\\varphi \\)</span>. Several examples are presented to show that these results may not hold without the assumptions. This work can be seen as a random version of the previous work (Jiang et al. in J Differ Equ 379:862–883, 2024), in which the rotational entropy was introduced and investigated as a homotopy invariant for any torus map.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational Entropy for Random Torus Maps\",\"authors\":\"Weifeng Jiang,&nbsp;Zhengxing Lian,&nbsp;Yujun Zhu\",\"doi\":\"10.1007/s10955-025-03443-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the rotational entropy <span>\\\\(h_r(\\\\varphi )\\\\)</span> is investigated for a random dynamical system <span>\\\\(\\\\varphi \\\\)</span> on the torus. The formula of <span>\\\\(h_r(\\\\varphi )\\\\)</span> is obtained for <span>\\\\(\\\\varphi \\\\)</span> which satisfies certain assumptions, and the lower and upper bounds of <span>\\\\(h_r(\\\\varphi )\\\\)</span> are given for more general <span>\\\\(\\\\varphi \\\\)</span>. Several examples are presented to show that these results may not hold without the assumptions. This work can be seen as a random version of the previous work (Jiang et al. in J Differ Equ 379:862–883, 2024), in which the rotational entropy was introduced and investigated as a homotopy invariant for any torus map.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03443-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03443-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了环面上随机动力系统\(\varphi \)的旋转熵\(h_r(\varphi )\)。对于满足一定假设的\(\varphi \),得到了\(h_r(\varphi )\)的公式,对于更一般的\(\varphi \),给出了\(h_r(\varphi )\)的下界和上界。几个例子表明,如果没有这些假设,这些结果可能不成立。这项工作可以看作是之前的工作(Jiang等人在J Differ Equ 379:862-883, 2024)的随机版本,其中引入了旋转熵,并将其作为任何环面映射的同伦不变量进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotational Entropy for Random Torus Maps

In this paper, the rotational entropy \(h_r(\varphi )\) is investigated for a random dynamical system \(\varphi \) on the torus. The formula of \(h_r(\varphi )\) is obtained for \(\varphi \) which satisfies certain assumptions, and the lower and upper bounds of \(h_r(\varphi )\) are given for more general \(\varphi \). Several examples are presented to show that these results may not hold without the assumptions. This work can be seen as a random version of the previous work (Jiang et al. in J Differ Equ 379:862–883, 2024), in which the rotational entropy was introduced and investigated as a homotopy invariant for any torus map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信