Haoming Chen, Christy Yan-yu Leung, Ping Cheung, Haolin Liu, Sai Tick Chan, Xiaoming Shi
{"title":"用允许区域对流的模拟预测对流诱导湍流","authors":"Haoming Chen, Christy Yan-yu Leung, Ping Cheung, Haolin Liu, Sai Tick Chan, Xiaoming Shi","doi":"10.1007/s13143-025-00398-4","DOIUrl":null,"url":null,"abstract":"<div><p>Convectively induced turbulence (CIT) is a severe aviation hazard. It is challenging to forecast CIT because low-resolution models cannot explicitly resolve convective motions at kilometer scales. In this study, we used the Model for Prediction Across Scales (MPAS) to simulate CIT cases with convection-permitting resolution (<span>\\(\\sim \\)</span>1 km) in the region of the CIT events and coarse resolution in other parts of the globe. We developed a method to estimate the eddy dissipation rate (EDR) using the resolved wind field of the MPAS simulations. The method is based on explicit filtering and reconstruction in the turbulence modeling for large-eddy simulations (LES). It estimates turbulence kinetic energy (TKE), which is then used to derive EDR. The new method produces different turbulence distribution and intensity than previous methods based on second-order structure functions and convective gravity wave drag, with higher accuracy and better correlation with observations for CIT cases tested in this study. The 1-km resolution simulation generates more accurate EDR and improves spatial patterns, but it is computationally demanding. The 3-km resolution can get benefits from reasonable accuracy and affordable computational cost. Because convection-permitting resolutions are in the gray zone for simulating convection, we evaluated the sensitivity of the prediction to the variations in physical and numerical schemes. Varying cumulus convection parameterization and monotonicity of numerical schemes are identified as practical approaches to generate beneficial ensemble spread. However, the physical perturbation-based ensemble has limitations, and initial condition perturbations are still necessary to encompass uncertainties in the development of convection.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"61 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-025-00398-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting Convectively Induced Turbulence With Regionally Convection-Permitting Simulations\",\"authors\":\"Haoming Chen, Christy Yan-yu Leung, Ping Cheung, Haolin Liu, Sai Tick Chan, Xiaoming Shi\",\"doi\":\"10.1007/s13143-025-00398-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convectively induced turbulence (CIT) is a severe aviation hazard. It is challenging to forecast CIT because low-resolution models cannot explicitly resolve convective motions at kilometer scales. In this study, we used the Model for Prediction Across Scales (MPAS) to simulate CIT cases with convection-permitting resolution (<span>\\\\(\\\\sim \\\\)</span>1 km) in the region of the CIT events and coarse resolution in other parts of the globe. We developed a method to estimate the eddy dissipation rate (EDR) using the resolved wind field of the MPAS simulations. The method is based on explicit filtering and reconstruction in the turbulence modeling for large-eddy simulations (LES). It estimates turbulence kinetic energy (TKE), which is then used to derive EDR. The new method produces different turbulence distribution and intensity than previous methods based on second-order structure functions and convective gravity wave drag, with higher accuracy and better correlation with observations for CIT cases tested in this study. The 1-km resolution simulation generates more accurate EDR and improves spatial patterns, but it is computationally demanding. The 3-km resolution can get benefits from reasonable accuracy and affordable computational cost. Because convection-permitting resolutions are in the gray zone for simulating convection, we evaluated the sensitivity of the prediction to the variations in physical and numerical schemes. Varying cumulus convection parameterization and monotonicity of numerical schemes are identified as practical approaches to generate beneficial ensemble spread. However, the physical perturbation-based ensemble has limitations, and initial condition perturbations are still necessary to encompass uncertainties in the development of convection.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"61 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13143-025-00398-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-025-00398-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-025-00398-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Predicting Convectively Induced Turbulence With Regionally Convection-Permitting Simulations
Convectively induced turbulence (CIT) is a severe aviation hazard. It is challenging to forecast CIT because low-resolution models cannot explicitly resolve convective motions at kilometer scales. In this study, we used the Model for Prediction Across Scales (MPAS) to simulate CIT cases with convection-permitting resolution (\(\sim \)1 km) in the region of the CIT events and coarse resolution in other parts of the globe. We developed a method to estimate the eddy dissipation rate (EDR) using the resolved wind field of the MPAS simulations. The method is based on explicit filtering and reconstruction in the turbulence modeling for large-eddy simulations (LES). It estimates turbulence kinetic energy (TKE), which is then used to derive EDR. The new method produces different turbulence distribution and intensity than previous methods based on second-order structure functions and convective gravity wave drag, with higher accuracy and better correlation with observations for CIT cases tested in this study. The 1-km resolution simulation generates more accurate EDR and improves spatial patterns, but it is computationally demanding. The 3-km resolution can get benefits from reasonable accuracy and affordable computational cost. Because convection-permitting resolutions are in the gray zone for simulating convection, we evaluated the sensitivity of the prediction to the variations in physical and numerical schemes. Varying cumulus convection parameterization and monotonicity of numerical schemes are identified as practical approaches to generate beneficial ensemble spread. However, the physical perturbation-based ensemble has limitations, and initial condition perturbations are still necessary to encompass uncertainties in the development of convection.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.