完全正交格的匕首核范畴

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Michal Botur, Jan Paseka, Richard Smolka
{"title":"完全正交格的匕首核范畴","authors":"Michal Botur,&nbsp;Jan Paseka,&nbsp;Richard Smolka","doi":"10.1007/s10773-025-05965-z","DOIUrl":null,"url":null,"abstract":"<div><p>Dagger kernel categories, a powerful framework for studying quantum phenomena within category theory, provide a rich mathematical structure that naturally encodes key aspects of quantum logic. This paper focuses on the category <span>\\({\\textbf {SupOMLatLin}}\\)</span> of complete orthomodular lattices with linear maps. We demonstrate that <span>\\({\\textbf {SupOMLatLin}}\\)</span> itself forms a dagger kernel category, equipped with additional structure such as dagger biproducts and free objects. A key result establishes a concrete description of how every morphism in <span>\\({\\textbf {SupOMLatLin}}\\)</span> admits an essentially unique factorization as a zero-epi followed by a dagger monomorphism. This factorization theorem, along with the dagger kernel category structure of <span>\\({\\textbf {SupOMLatLin}}\\)</span>, provides new insights into the interplay between complete orthomodular lattices and the foundational concepts of quantum theory.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dagger Kernel Category of Complete Orthomodular Lattices\",\"authors\":\"Michal Botur,&nbsp;Jan Paseka,&nbsp;Richard Smolka\",\"doi\":\"10.1007/s10773-025-05965-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dagger kernel categories, a powerful framework for studying quantum phenomena within category theory, provide a rich mathematical structure that naturally encodes key aspects of quantum logic. This paper focuses on the category <span>\\\\({\\\\textbf {SupOMLatLin}}\\\\)</span> of complete orthomodular lattices with linear maps. We demonstrate that <span>\\\\({\\\\textbf {SupOMLatLin}}\\\\)</span> itself forms a dagger kernel category, equipped with additional structure such as dagger biproducts and free objects. A key result establishes a concrete description of how every morphism in <span>\\\\({\\\\textbf {SupOMLatLin}}\\\\)</span> admits an essentially unique factorization as a zero-epi followed by a dagger monomorphism. This factorization theorem, along with the dagger kernel category structure of <span>\\\\({\\\\textbf {SupOMLatLin}}\\\\)</span>, provides new insights into the interplay between complete orthomodular lattices and the foundational concepts of quantum theory.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-05965-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05965-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

匕首核范畴是范畴论中研究量子现象的一个强大框架,它提供了丰富的数学结构,自然地编码了量子逻辑的关键方面。本文研究了具有线性映射的完全正模格的\({\textbf {SupOMLatLin}}\)范畴。我们证明了\({\textbf {SupOMLatLin}}\)本身形成了一个匕首内核类别,并配备了匕首双产物和自由对象等附加结构。一个关键的结果建立了一个具体的描述,说明\({\textbf {SupOMLatLin}}\)中的每个态射如何承认一个本质上唯一的分解,即0 -epi之后是一个匕首单态。这个分解定理,与\({\textbf {SupOMLatLin}}\)的匕首核范畴结构一起,为完全正模格与量子理论的基本概念之间的相互作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dagger Kernel Category of Complete Orthomodular Lattices

Dagger kernel categories, a powerful framework for studying quantum phenomena within category theory, provide a rich mathematical structure that naturally encodes key aspects of quantum logic. This paper focuses on the category \({\textbf {SupOMLatLin}}\) of complete orthomodular lattices with linear maps. We demonstrate that \({\textbf {SupOMLatLin}}\) itself forms a dagger kernel category, equipped with additional structure such as dagger biproducts and free objects. A key result establishes a concrete description of how every morphism in \({\textbf {SupOMLatLin}}\) admits an essentially unique factorization as a zero-epi followed by a dagger monomorphism. This factorization theorem, along with the dagger kernel category structure of \({\textbf {SupOMLatLin}}\), provides new insights into the interplay between complete orthomodular lattices and the foundational concepts of quantum theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信