锂盐对钠离子电池界面副反应的转化作用

IF 26.6 1区 材料科学 Q1 Engineering
Jooeun Byun, Joon Ha Chang, Chihyun Hwang, Chae Rim Lee, Miseung Kim, Jun Ho Song, Boseong Heo, Sunghun Choi, Jong Hyeok Han, Hee-Jae Jeon, Beom Tak Na, Youngjin Kim, Ji-Sang Yu, Hyun-seung Kim
{"title":"锂盐对钠离子电池界面副反应的转化作用","authors":"Jooeun Byun,&nbsp;Joon Ha Chang,&nbsp;Chihyun Hwang,&nbsp;Chae Rim Lee,&nbsp;Miseung Kim,&nbsp;Jun Ho Song,&nbsp;Boseong Heo,&nbsp;Sunghun Choi,&nbsp;Jong Hyeok Han,&nbsp;Hee-Jae Jeon,&nbsp;Beom Tak Na,&nbsp;Youngjin Kim,&nbsp;Ji-Sang Yu,&nbsp;Hyun-seung Kim","doi":"10.1007/s40820-025-01742-z","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>LiPF<sub>6</sub> integration into sodium-ion battery electrolytes strengthens solid electrolyte interphase (SEI) film and stabilizes O3 electrode surfaces, enhancing cycleability with 92.7% at 400 cycles.</p>\n </li>\n <li>\n <p>Li-based SEI exhibits reduced solubility, effectively suppressing sodium-ion and electron leakage, and mitigating electrolyte decomposition on hard carbon electrode.</p>\n </li>\n <li>\n <p>The formation of Li-ion pillars on O3-type electrode surfaces significantly reduces oxygen release and electrolyte degradation, resulting in improved capacity retention.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01742-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Transformative Effect of Li Salt for Proactively Mitigating Interfacial Side Reactions in Sodium-Ion Batteries\",\"authors\":\"Jooeun Byun,&nbsp;Joon Ha Chang,&nbsp;Chihyun Hwang,&nbsp;Chae Rim Lee,&nbsp;Miseung Kim,&nbsp;Jun Ho Song,&nbsp;Boseong Heo,&nbsp;Sunghun Choi,&nbsp;Jong Hyeok Han,&nbsp;Hee-Jae Jeon,&nbsp;Beom Tak Na,&nbsp;Youngjin Kim,&nbsp;Ji-Sang Yu,&nbsp;Hyun-seung Kim\",\"doi\":\"10.1007/s40820-025-01742-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>LiPF<sub>6</sub> integration into sodium-ion battery electrolytes strengthens solid electrolyte interphase (SEI) film and stabilizes O3 electrode surfaces, enhancing cycleability with 92.7% at 400 cycles.</p>\\n </li>\\n <li>\\n <p>Li-based SEI exhibits reduced solubility, effectively suppressing sodium-ion and electron leakage, and mitigating electrolyte decomposition on hard carbon electrode.</p>\\n </li>\\n <li>\\n <p>The formation of Li-ion pillars on O3-type electrode surfaces significantly reduces oxygen release and electrolyte degradation, resulting in improved capacity retention.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01742-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01742-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01742-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

LiPF6集成到钠离子电池电解质中,增强了固体电解质间相(SEI)膜,稳定了O3电极表面,在400次循环中提高了92.7%的可循环性。li基SEI具有较低的溶解度,有效抑制钠离子和电子泄漏,减轻硬碳电极上电解质分解。在o3型电极表面形成的锂离子柱显著减少了氧的释放和电解质的降解,从而提高了容量保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformative Effect of Li Salt for Proactively Mitigating Interfacial Side Reactions in Sodium-Ion Batteries

Highlights

  • LiPF6 integration into sodium-ion battery electrolytes strengthens solid electrolyte interphase (SEI) film and stabilizes O3 electrode surfaces, enhancing cycleability with 92.7% at 400 cycles.

  • Li-based SEI exhibits reduced solubility, effectively suppressing sodium-ion and electron leakage, and mitigating electrolyte decomposition on hard carbon electrode.

  • The formation of Li-ion pillars on O3-type electrode surfaces significantly reduces oxygen release and electrolyte degradation, resulting in improved capacity retention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信