远距离μ介子g - 2的强子真空极化贡献

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Dalibor Djukanovic, Georg von Hippel, Simon Kuberski, Harvey B. Meyer, Nolan Miller, Konstantin Ottnad, Julian Parrino, Andreas Risch, Hartmut Wittig
{"title":"远距离μ介子g - 2的强子真空极化贡献","authors":"Dalibor Djukanovic,&nbsp;Georg von Hippel,&nbsp;Simon Kuberski,&nbsp;Harvey B. Meyer,&nbsp;Nolan Miller,&nbsp;Konstantin Ottnad,&nbsp;Julian Parrino,&nbsp;Andreas Risch,&nbsp;Hartmut Wittig","doi":"10.1007/JHEP04(2025)098","DOIUrl":null,"url":null,"abstract":"<p>We present our lattice QCD result for the long-distance part of the hadronic vacuum polarization contribution, (<span>\\( {a}_{\\mu}^{\\textrm{hvp}} \\)</span>)<sup>LD</sup>, to the muon <i>g</i> − 2 in the time-momentum representation. This is the numerically dominant, and at the same time the most challenging part regarding statistical precision. Our calculation is based on ensembles with dynamical up, down and strange quarks, employing the O(<i>a</i>)-improved Wilson fermion action with lattice spacings ranging from 0<i>.</i>035–0<i>.</i>099 fm. In order to reduce statistical noise in the long-distance part of the correlator to the per-mille level, we apply low-mode averaging and combine it with an explicit spectral reconstruction. Our result is (<span>\\( {a}_{\\mu}^{\\textrm{hvp}} \\)</span>)<sup>LD</sup> = 423<i>.</i>2(4<i>.</i>2)<sub>stat</sub>(3<i>.</i>4)<sub>syst</sub> × 10<sup>−10</sup> in isospin-symmetric QCD, where the pion decay constant is used to set the energy scale. When combined with our previous results for the short- and intermediate-distance window observables and after including all sub-dominant contributions as well as isospin-breaking corrections, we obtain the total leading-order hadronic vacuum polarization contribution as <span>\\( {a}_{\\mu}^{\\textrm{hvp}} \\)</span> = 724<i>.</i>5(4<i>.</i>9)<sub>stat</sub>(5<i>.</i>2)<sub>syst</sub> × 10<sup>−10</sup>. Our result displays a tension of 3.9 standard deviations with the data-driven estimate published in the 2020 White Paper, but leads to a SM prediction for the total muon anomalous magnetic moment that agrees with the current experimental average.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)098.pdf","citationCount":"0","resultStr":"{\"title\":\"The hadronic vacuum polarization contribution to the muon g − 2 at long distances\",\"authors\":\"Dalibor Djukanovic,&nbsp;Georg von Hippel,&nbsp;Simon Kuberski,&nbsp;Harvey B. Meyer,&nbsp;Nolan Miller,&nbsp;Konstantin Ottnad,&nbsp;Julian Parrino,&nbsp;Andreas Risch,&nbsp;Hartmut Wittig\",\"doi\":\"10.1007/JHEP04(2025)098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present our lattice QCD result for the long-distance part of the hadronic vacuum polarization contribution, (<span>\\\\( {a}_{\\\\mu}^{\\\\textrm{hvp}} \\\\)</span>)<sup>LD</sup>, to the muon <i>g</i> − 2 in the time-momentum representation. This is the numerically dominant, and at the same time the most challenging part regarding statistical precision. Our calculation is based on ensembles with dynamical up, down and strange quarks, employing the O(<i>a</i>)-improved Wilson fermion action with lattice spacings ranging from 0<i>.</i>035–0<i>.</i>099 fm. In order to reduce statistical noise in the long-distance part of the correlator to the per-mille level, we apply low-mode averaging and combine it with an explicit spectral reconstruction. Our result is (<span>\\\\( {a}_{\\\\mu}^{\\\\textrm{hvp}} \\\\)</span>)<sup>LD</sup> = 423<i>.</i>2(4<i>.</i>2)<sub>stat</sub>(3<i>.</i>4)<sub>syst</sub> × 10<sup>−10</sup> in isospin-symmetric QCD, where the pion decay constant is used to set the energy scale. When combined with our previous results for the short- and intermediate-distance window observables and after including all sub-dominant contributions as well as isospin-breaking corrections, we obtain the total leading-order hadronic vacuum polarization contribution as <span>\\\\( {a}_{\\\\mu}^{\\\\textrm{hvp}} \\\\)</span> = 724<i>.</i>5(4<i>.</i>9)<sub>stat</sub>(5<i>.</i>2)<sub>syst</sub> × 10<sup>−10</sup>. Our result displays a tension of 3.9 standard deviations with the data-driven estimate published in the 2020 White Paper, but leads to a SM prediction for the total muon anomalous magnetic moment that agrees with the current experimental average.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)098.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)098\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)098","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了强子真空极化对时间动量表示中的μ子g−2的远距离贡献(\( {a}_{\mu}^{\textrm{hvp}} \))LD的晶格QCD结果。这是数字上的优势,同时也是统计精度方面最具挑战性的部分。我们的计算基于具有动态上、下和奇异夸克的系综,采用O(a)改进的威尔逊费米子作用,晶格间距范围为0.035-0.099 fm。为了将相关器的远距离部分的统计噪声降低到每英里水平,我们采用了低模式平均,并将其与显式光谱重建相结合。我们的结果是(\( {a}_{\mu}^{\textrm{hvp}} \))LD = 423.2(4.2)stat(3.4) system × 10−10,其中π介子衰变常数用于设定能量标度。当结合我们之前的中短距离窗口观测结果,并考虑所有次主导贡献以及同位旋断裂修正后,我们得到总一级强子真空极化贡献为\( {a}_{\mu}^{\textrm{hvp}} \) = 724.5(4.9)stat(5.2) system × 10−10。我们的结果显示,与2020年白皮书中发表的数据驱动估计的张力为3.9标准差,但导致对总μ子异常磁矩的SM预测与当前的实验平均值一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hadronic vacuum polarization contribution to the muon g − 2 at long distances

We present our lattice QCD result for the long-distance part of the hadronic vacuum polarization contribution, (\( {a}_{\mu}^{\textrm{hvp}} \))LD, to the muon g − 2 in the time-momentum representation. This is the numerically dominant, and at the same time the most challenging part regarding statistical precision. Our calculation is based on ensembles with dynamical up, down and strange quarks, employing the O(a)-improved Wilson fermion action with lattice spacings ranging from 0.035–0.099 fm. In order to reduce statistical noise in the long-distance part of the correlator to the per-mille level, we apply low-mode averaging and combine it with an explicit spectral reconstruction. Our result is (\( {a}_{\mu}^{\textrm{hvp}} \))LD = 423.2(4.2)stat(3.4)syst × 10−10 in isospin-symmetric QCD, where the pion decay constant is used to set the energy scale. When combined with our previous results for the short- and intermediate-distance window observables and after including all sub-dominant contributions as well as isospin-breaking corrections, we obtain the total leading-order hadronic vacuum polarization contribution as \( {a}_{\mu}^{\textrm{hvp}} \) = 724.5(4.9)stat(5.2)syst × 10−10. Our result displays a tension of 3.9 standard deviations with the data-driven estimate published in the 2020 White Paper, but leads to a SM prediction for the total muon anomalous magnetic moment that agrees with the current experimental average.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信