WallGo有多快?一个计算一阶相变壁面速度的程序包

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Andreas Ekstedt, Oliver Gould, Joonas Hirvonen, Benoit Laurent, Lauri Niemi, Philipp Schicho, Jorinde van de Vis
{"title":"WallGo有多快?一个计算一阶相变壁面速度的程序包","authors":"Andreas Ekstedt,&nbsp;Oliver Gould,&nbsp;Joonas Hirvonen,&nbsp;Benoit Laurent,&nbsp;Lauri Niemi,&nbsp;Philipp Schicho,&nbsp;Jorinde van de Vis","doi":"10.1007/JHEP04(2025)101","DOIUrl":null,"url":null,"abstract":"<p>WallGo is an open-source software designed to compute the bubble wall velocity in first-order cosmological phase transitions. Additionally, it evaluates the energy budget available for generating gravitational waves. The main part of WallGo, built in Python, determines the wall velocity by solving the scalar-field(s) equation of motion, the Boltzmann equations and energy-momentum conservation for the fluid velocity and temperature. WallGo also includes two auxiliary modules: WallGoMatrix, which computes matrix elements for out-of-equilibrium particles, and WallGoCollision, which performs higher-dimensional integrals for Boltzmann collision terms. Users can implement custom models by defining an effective potential and specifying a list of out-of-equilibrium particles and their interactions.</p><p>As the first public software to compute the wall velocity including out-of-equilibrium contributions, WallGo improves the precision of the computation compared to common assumptions in earlier computations. It utilises a spectral method for the deviation from equilibrium and collision terms that provides exponential convergence in basis polynomials, and supports multiple out-of-equilibrium particles, allowing for Boltzmann mixing terms. WallGo is tailored for non-runaway wall scenarios where leading-order coupling effects dominate friction.</p><p>While this work introduces the software and the underlying theory, a more detailed documentation can be found in https://wallgo.readthedocs.io.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)101.pdf","citationCount":"0","resultStr":"{\"title\":\"How fast does the WallGo? A package for computing wall velocities in first-order phase transitions\",\"authors\":\"Andreas Ekstedt,&nbsp;Oliver Gould,&nbsp;Joonas Hirvonen,&nbsp;Benoit Laurent,&nbsp;Lauri Niemi,&nbsp;Philipp Schicho,&nbsp;Jorinde van de Vis\",\"doi\":\"10.1007/JHEP04(2025)101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>WallGo is an open-source software designed to compute the bubble wall velocity in first-order cosmological phase transitions. Additionally, it evaluates the energy budget available for generating gravitational waves. The main part of WallGo, built in Python, determines the wall velocity by solving the scalar-field(s) equation of motion, the Boltzmann equations and energy-momentum conservation for the fluid velocity and temperature. WallGo also includes two auxiliary modules: WallGoMatrix, which computes matrix elements for out-of-equilibrium particles, and WallGoCollision, which performs higher-dimensional integrals for Boltzmann collision terms. Users can implement custom models by defining an effective potential and specifying a list of out-of-equilibrium particles and their interactions.</p><p>As the first public software to compute the wall velocity including out-of-equilibrium contributions, WallGo improves the precision of the computation compared to common assumptions in earlier computations. It utilises a spectral method for the deviation from equilibrium and collision terms that provides exponential convergence in basis polynomials, and supports multiple out-of-equilibrium particles, allowing for Boltzmann mixing terms. WallGo is tailored for non-runaway wall scenarios where leading-order coupling effects dominate friction.</p><p>While this work introduces the software and the underlying theory, a more detailed documentation can be found in https://wallgo.readthedocs.io.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)101.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)101\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)101","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

WallGo是一个开源软件,用于计算一阶宇宙相变中的气泡壁速度。此外,它还评估了产生引力波的能量预算。WallGo的主要部分是用Python构建的,它通过求解标量场运动方程、玻尔兹曼方程和流体速度和温度的能量动量守恒来确定壁面速度。WallGo还包括两个辅助模块:WallGoMatrix,用于计算非平衡粒子的矩阵元素,以及WallGoCollision,用于执行玻尔兹曼碰撞项的高维积分。用户可以通过定义有效势和指定非平衡粒子及其相互作用的列表来实现自定义模型。作为第一个计算包括非平衡贡献在内的壁速度的公共软件,与早期计算中的常见假设相比,WallGo提高了计算的精度。它利用光谱方法偏离平衡和碰撞项,在基本多项式中提供指数收敛,并支持多个非平衡粒子,允许玻尔兹曼混合项。WallGo是专为非失控的墙壁场景,其中一级耦合效应主导摩擦。虽然这项工作介绍了软件和底层理论,但可以在https://wallgo.readthedocs.io找到更详细的文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How fast does the WallGo? A package for computing wall velocities in first-order phase transitions

WallGo is an open-source software designed to compute the bubble wall velocity in first-order cosmological phase transitions. Additionally, it evaluates the energy budget available for generating gravitational waves. The main part of WallGo, built in Python, determines the wall velocity by solving the scalar-field(s) equation of motion, the Boltzmann equations and energy-momentum conservation for the fluid velocity and temperature. WallGo also includes two auxiliary modules: WallGoMatrix, which computes matrix elements for out-of-equilibrium particles, and WallGoCollision, which performs higher-dimensional integrals for Boltzmann collision terms. Users can implement custom models by defining an effective potential and specifying a list of out-of-equilibrium particles and their interactions.

As the first public software to compute the wall velocity including out-of-equilibrium contributions, WallGo improves the precision of the computation compared to common assumptions in earlier computations. It utilises a spectral method for the deviation from equilibrium and collision terms that provides exponential convergence in basis polynomials, and supports multiple out-of-equilibrium particles, allowing for Boltzmann mixing terms. WallGo is tailored for non-runaway wall scenarios where leading-order coupling effects dominate friction.

While this work introduces the software and the underlying theory, a more detailed documentation can be found in https://wallgo.readthedocs.io.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信