{"title":"氨基功能化碳微球的制备及其对Pb2+的吸附性能","authors":"Jiangfei Cao, Shuqi Xiao, Wenting Deng, Jiaying Zhang, Rui Chen, Jianqiao Qin, Xiang Li","doi":"10.1007/s11270-025-07989-x","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon microspheres (CMSs) were synthesized from soluble starch via a straightforward and efficient hydrothermal carbonization process. Soluble starch was chosen as a cost-effective, non-toxic, and sustainable precursor, offering a green approach to the production of carbon microspheres. Two types of amino-functionalized carbon microspheres (NH<sub>2</sub>-CMSs) were subsequently prepared via surface amino-modification using aqueous ammonia or ammonium persulfate. Quantitative analysis revealed that NH<sub>2</sub>-CMSs modified with ammonia exhibited a surface amino content 2.5 times higher than those modified with ammonium persulfate. Structural and morphological characterizations confirmed the successful synthesis of uniformly sized spherical NH<sub>2</sub>-CMSs, with the amino-functionalization maintaining the integrity of the carbon framework. Adsorption studies demonstrated that NH<sub>2</sub>-CMSs achieved a significantly enhanced theoretical maximum adsorption capacity of 130.96 mg·g<sup>−1</sup> for Pb<sup>2+</sup>, surpassing that of unmodified CMSs (80.87 mg·g<sup>−1</sup>) by 1.62 times. The primary adsorption mechanism involved the formation of covalent bonds between amino groups and Pb<sup>2+</sup>, resulting in stable metal complexes. The adsorption kinetics indicated a single-molecule adsorption behavior dominated by chemical adsorption as the rate-determining step. These findings underscore the potential of NH<sub>2</sub>-CMSs as highly effective adsorbents for the removal of Pb<sup>2+</sup> from aqueous solutions.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Amino-Functionalized Carbon Microspheres and Their Adsorption Characteristics for Pb2+ in Aqueous Solutions\",\"authors\":\"Jiangfei Cao, Shuqi Xiao, Wenting Deng, Jiaying Zhang, Rui Chen, Jianqiao Qin, Xiang Li\",\"doi\":\"10.1007/s11270-025-07989-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon microspheres (CMSs) were synthesized from soluble starch via a straightforward and efficient hydrothermal carbonization process. Soluble starch was chosen as a cost-effective, non-toxic, and sustainable precursor, offering a green approach to the production of carbon microspheres. Two types of amino-functionalized carbon microspheres (NH<sub>2</sub>-CMSs) were subsequently prepared via surface amino-modification using aqueous ammonia or ammonium persulfate. Quantitative analysis revealed that NH<sub>2</sub>-CMSs modified with ammonia exhibited a surface amino content 2.5 times higher than those modified with ammonium persulfate. Structural and morphological characterizations confirmed the successful synthesis of uniformly sized spherical NH<sub>2</sub>-CMSs, with the amino-functionalization maintaining the integrity of the carbon framework. Adsorption studies demonstrated that NH<sub>2</sub>-CMSs achieved a significantly enhanced theoretical maximum adsorption capacity of 130.96 mg·g<sup>−1</sup> for Pb<sup>2+</sup>, surpassing that of unmodified CMSs (80.87 mg·g<sup>−1</sup>) by 1.62 times. The primary adsorption mechanism involved the formation of covalent bonds between amino groups and Pb<sup>2+</sup>, resulting in stable metal complexes. The adsorption kinetics indicated a single-molecule adsorption behavior dominated by chemical adsorption as the rate-determining step. These findings underscore the potential of NH<sub>2</sub>-CMSs as highly effective adsorbents for the removal of Pb<sup>2+</sup> from aqueous solutions.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-025-07989-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07989-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Preparation of Amino-Functionalized Carbon Microspheres and Their Adsorption Characteristics for Pb2+ in Aqueous Solutions
Carbon microspheres (CMSs) were synthesized from soluble starch via a straightforward and efficient hydrothermal carbonization process. Soluble starch was chosen as a cost-effective, non-toxic, and sustainable precursor, offering a green approach to the production of carbon microspheres. Two types of amino-functionalized carbon microspheres (NH2-CMSs) were subsequently prepared via surface amino-modification using aqueous ammonia or ammonium persulfate. Quantitative analysis revealed that NH2-CMSs modified with ammonia exhibited a surface amino content 2.5 times higher than those modified with ammonium persulfate. Structural and morphological characterizations confirmed the successful synthesis of uniformly sized spherical NH2-CMSs, with the amino-functionalization maintaining the integrity of the carbon framework. Adsorption studies demonstrated that NH2-CMSs achieved a significantly enhanced theoretical maximum adsorption capacity of 130.96 mg·g−1 for Pb2+, surpassing that of unmodified CMSs (80.87 mg·g−1) by 1.62 times. The primary adsorption mechanism involved the formation of covalent bonds between amino groups and Pb2+, resulting in stable metal complexes. The adsorption kinetics indicated a single-molecule adsorption behavior dominated by chemical adsorption as the rate-determining step. These findings underscore the potential of NH2-CMSs as highly effective adsorbents for the removal of Pb2+ from aqueous solutions.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.