在 AlGaN/GaN MOSHEMT 上设计和模拟先进的掺硼 GaN 盖层,用于增强型无标记生物传感应用

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Reddy Govindappagari Hemalatha, Manoharan Arun Kumar, Girish Shankar Mishra, MohanKumar N, Kamal Batcha Mohamed Ismail, Shanmugam Mahalingam, Junghwan Kim
{"title":"在 AlGaN/GaN MOSHEMT 上设计和模拟先进的掺硼 GaN 盖层,用于增强型无标记生物传感应用","authors":"Reddy Govindappagari Hemalatha,&nbsp;Manoharan Arun Kumar,&nbsp;Girish Shankar Mishra,&nbsp;MohanKumar N,&nbsp;Kamal Batcha Mohamed Ismail,&nbsp;Shanmugam Mahalingam,&nbsp;Junghwan Kim","doi":"10.1007/s10544-025-00746-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the design and simulation of a biosensor based on HEMT technology, with a focus on a GaN/AlGaN MOSHEMT architecture with a cavity and a boron-doped GaN cap layer, for identifying label-free biological molecules. The inclusion of a boron-doped GaN cap layer in the AlGaN/GaN heterostructure facilitates E-mode operation. We examined the influence of neutral or label-free biomolecules on the electron concentration and device sensitivity. The Sentaurus TCAD device simulation tool was used to analyze the MOSHEMT structure. Our findings suggest that low dielectric biomolecules increase the drain current, whereas higher dielectric values decrease the drain current. We also evaluated the device performance across various cavity lengths (100 nm, 200 nm, 300 nm, and 400 nm). The AlGaN/GaN MOSHEMT provides excellent sensitivity and precision in biological detection. The proposed GaN cap layer MOSHEMT biosensor is designed to detect biomolecules such as Keratin, Zein, ChOx, Biotin, Streptavidin, and Urease. The addition of these biomolecules to the nanocavity significantly enhances the drain current, transconductance (g<sub>m</sub>), output conductance (g<sub>d</sub>), and sensitivity. The device demonstrates high sensitivity (~ 73%) under optimized parameters, making it suitable for precise label-free biosensing applications.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Simulation of advanced boron-doped GaN cap layer on AlGaN/GaN MOSHEMTs for enhanced label-free biosensing applications\",\"authors\":\"Reddy Govindappagari Hemalatha,&nbsp;Manoharan Arun Kumar,&nbsp;Girish Shankar Mishra,&nbsp;MohanKumar N,&nbsp;Kamal Batcha Mohamed Ismail,&nbsp;Shanmugam Mahalingam,&nbsp;Junghwan Kim\",\"doi\":\"10.1007/s10544-025-00746-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on the design and simulation of a biosensor based on HEMT technology, with a focus on a GaN/AlGaN MOSHEMT architecture with a cavity and a boron-doped GaN cap layer, for identifying label-free biological molecules. The inclusion of a boron-doped GaN cap layer in the AlGaN/GaN heterostructure facilitates E-mode operation. We examined the influence of neutral or label-free biomolecules on the electron concentration and device sensitivity. The Sentaurus TCAD device simulation tool was used to analyze the MOSHEMT structure. Our findings suggest that low dielectric biomolecules increase the drain current, whereas higher dielectric values decrease the drain current. We also evaluated the device performance across various cavity lengths (100 nm, 200 nm, 300 nm, and 400 nm). The AlGaN/GaN MOSHEMT provides excellent sensitivity and precision in biological detection. The proposed GaN cap layer MOSHEMT biosensor is designed to detect biomolecules such as Keratin, Zein, ChOx, Biotin, Streptavidin, and Urease. The addition of these biomolecules to the nanocavity significantly enhances the drain current, transconductance (g<sub>m</sub>), output conductance (g<sub>d</sub>), and sensitivity. The device demonstrates high sensitivity (~ 73%) under optimized parameters, making it suitable for precise label-free biosensing applications.</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-025-00746-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00746-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是基于HEMT技术的生物传感器的设计和仿真,重点是GaN/AlGaN MOSHEMT结构,具有腔和掺硼GaN帽层,用于识别无标记生物分子。在AlGaN/GaN异质结构中加入掺杂硼的GaN帽层有助于e模式操作。我们考察了中性或无标记生物分子对电子浓度和器件灵敏度的影响。利用Sentaurus TCAD器件仿真工具对MOSHEMT结构进行分析。我们的研究结果表明,低介电生物分子增加漏极电流,而高介电值降低漏极电流。我们还评估了器件在不同空腔长度(100 nm、200 nm、300 nm和400 nm)下的性能。AlGaN/GaN MOSHEMT在生物检测中具有优异的灵敏度和精度。所提出的GaN帽层MOSHEMT生物传感器设计用于检测生物分子,如角蛋白、玉米蛋白、ChOx、生物素、链亲和素和脲酶。将这些生物分子添加到纳米腔中可以显著提高漏极电流、跨导率(gm)、输出导率(gd)和灵敏度。该器件在优化参数下具有高灵敏度(~ 73%),适用于精确的无标签生物传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Simulation of advanced boron-doped GaN cap layer on AlGaN/GaN MOSHEMTs for enhanced label-free biosensing applications

This study focuses on the design and simulation of a biosensor based on HEMT technology, with a focus on a GaN/AlGaN MOSHEMT architecture with a cavity and a boron-doped GaN cap layer, for identifying label-free biological molecules. The inclusion of a boron-doped GaN cap layer in the AlGaN/GaN heterostructure facilitates E-mode operation. We examined the influence of neutral or label-free biomolecules on the electron concentration and device sensitivity. The Sentaurus TCAD device simulation tool was used to analyze the MOSHEMT structure. Our findings suggest that low dielectric biomolecules increase the drain current, whereas higher dielectric values decrease the drain current. We also evaluated the device performance across various cavity lengths (100 nm, 200 nm, 300 nm, and 400 nm). The AlGaN/GaN MOSHEMT provides excellent sensitivity and precision in biological detection. The proposed GaN cap layer MOSHEMT biosensor is designed to detect biomolecules such as Keratin, Zein, ChOx, Biotin, Streptavidin, and Urease. The addition of these biomolecules to the nanocavity significantly enhances the drain current, transconductance (gm), output conductance (gd), and sensitivity. The device demonstrates high sensitivity (~ 73%) under optimized parameters, making it suitable for precise label-free biosensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信