Saerom Park, Jeong Woo Lee, Dojin Kim, Ki Soo Park, Sang Hyun Lee
{"title":"抗氧化包覆金纳米颗粒比色法检测卡那霉素","authors":"Saerom Park, Jeong Woo Lee, Dojin Kim, Ki Soo Park, Sang Hyun Lee","doi":"10.1007/s11814-025-00432-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the development of aptasensors, which are biosensors that use aptamers (short DNA or RNA molecules) to specifically bind to target molecules, gold nanoparticles (GNPs) have traditionally been synthesized using citric acid. However, citric acid-capped GNPs are not optimized for constructing aptasensors. In this study, we aimed to develop a more sensitive, selective, and efficient antioxidant-capped GNP (A-GNP) probe for the colorimetric detection of kanamycin. We assessed the performance of A-GNPs synthesized with polyphenols, multi-carboxylic acids, ascorbic acid, and kojic acid, as both reducing agents and stabilizers. Among the tested antioxidants, only ascorbic acid and gallic acid mediated the formation of A-GNPs at room temperature and these could be optimized to construct aptasensors by functionalizing the A-GNPs with poly(adenine)-tailed DNA aptamers (pA-apt). The colorimetric probe using gallic acid-capped GNPs had a limit of detection for kanamycin of 6.2 nM, which is lower than the 22.0 nM value obtained using citric acid-capped GNPs. Furthermore, this aptasensor showed high selectivity for kanamycin, indicating that the A-GNP/pA-apt probe could be applied as a novel aptasensor for antibiotic detection in real-world contexts.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 5","pages":"1099 - 1107"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant-Capped Gold Nanoparticles for Colorimetric Detection of Kanamycin\",\"authors\":\"Saerom Park, Jeong Woo Lee, Dojin Kim, Ki Soo Park, Sang Hyun Lee\",\"doi\":\"10.1007/s11814-025-00432-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the development of aptasensors, which are biosensors that use aptamers (short DNA or RNA molecules) to specifically bind to target molecules, gold nanoparticles (GNPs) have traditionally been synthesized using citric acid. However, citric acid-capped GNPs are not optimized for constructing aptasensors. In this study, we aimed to develop a more sensitive, selective, and efficient antioxidant-capped GNP (A-GNP) probe for the colorimetric detection of kanamycin. We assessed the performance of A-GNPs synthesized with polyphenols, multi-carboxylic acids, ascorbic acid, and kojic acid, as both reducing agents and stabilizers. Among the tested antioxidants, only ascorbic acid and gallic acid mediated the formation of A-GNPs at room temperature and these could be optimized to construct aptasensors by functionalizing the A-GNPs with poly(adenine)-tailed DNA aptamers (pA-apt). The colorimetric probe using gallic acid-capped GNPs had a limit of detection for kanamycin of 6.2 nM, which is lower than the 22.0 nM value obtained using citric acid-capped GNPs. Furthermore, this aptasensor showed high selectivity for kanamycin, indicating that the A-GNP/pA-apt probe could be applied as a novel aptasensor for antibiotic detection in real-world contexts.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"42 5\",\"pages\":\"1099 - 1107\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-025-00432-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-025-00432-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Antioxidant-Capped Gold Nanoparticles for Colorimetric Detection of Kanamycin
In the development of aptasensors, which are biosensors that use aptamers (short DNA or RNA molecules) to specifically bind to target molecules, gold nanoparticles (GNPs) have traditionally been synthesized using citric acid. However, citric acid-capped GNPs are not optimized for constructing aptasensors. In this study, we aimed to develop a more sensitive, selective, and efficient antioxidant-capped GNP (A-GNP) probe for the colorimetric detection of kanamycin. We assessed the performance of A-GNPs synthesized with polyphenols, multi-carboxylic acids, ascorbic acid, and kojic acid, as both reducing agents and stabilizers. Among the tested antioxidants, only ascorbic acid and gallic acid mediated the formation of A-GNPs at room temperature and these could be optimized to construct aptasensors by functionalizing the A-GNPs with poly(adenine)-tailed DNA aptamers (pA-apt). The colorimetric probe using gallic acid-capped GNPs had a limit of detection for kanamycin of 6.2 nM, which is lower than the 22.0 nM value obtained using citric acid-capped GNPs. Furthermore, this aptasensor showed high selectivity for kanamycin, indicating that the A-GNP/pA-apt probe could be applied as a novel aptasensor for antibiotic detection in real-world contexts.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.