环保型P-N协同阻燃剂的合成及其对环氧树脂性能的影响

IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES
Hao Wang, Yinjie Wang, Chuang Yu, Xiaohui Xing, Peng Lin, Jiping Liu, Ye-Tang Pan
{"title":"环保型P-N协同阻燃剂的合成及其对环氧树脂性能的影响","authors":"Hao Wang,&nbsp;Yinjie Wang,&nbsp;Chuang Yu,&nbsp;Xiaohui Xing,&nbsp;Peng Lin,&nbsp;Jiping Liu,&nbsp;Ye-Tang Pan","doi":"10.1016/j.aiepr.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Additive flame retardants are increasingly frequently used in the current research on flame retardant techniques for polymer materials. In this work, 2-aminopyrazine and spiro-phosphorus oxychloride (SPDPC) were combined to create an environmentally friendly flame-retardant aminopyrazine spiro pentanol bisphosphonate (APPC). This solution addressed the issues of conventional flame retardant dispersion and low flame-retardant efficiency. The LOI value can reach 29.7 % with the addition of 7 wt% APPC, and the UL-94 test was able to achieve the V-0 rating. Furthermore, a remarkable decrease of 62.23 % in the peak heat release rate (pHRR), 51.23 % in the peak value of the CO production rate, and 63.57 % in the peak value of the CO<sub>2</sub> production rate was shown by the cone calorimeter experiment. The heat insulation and smoke suppression effect is also exceptional. According to the analysis of TG-FTIR, IR, XPS and SEM results, there is sufficient evidence that APPC as a phosphorus-nitrogen intumescent flame retardant (IFR), can produce beneficial effects in both catalyzing char formation and inhibiting toxic smoke production.</div></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"8 2","pages":"Pages 279-288"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of an environmentally friendly P–N synergistic flame retardant and its effect on the properties of epoxy resin\",\"authors\":\"Hao Wang,&nbsp;Yinjie Wang,&nbsp;Chuang Yu,&nbsp;Xiaohui Xing,&nbsp;Peng Lin,&nbsp;Jiping Liu,&nbsp;Ye-Tang Pan\",\"doi\":\"10.1016/j.aiepr.2024.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive flame retardants are increasingly frequently used in the current research on flame retardant techniques for polymer materials. In this work, 2-aminopyrazine and spiro-phosphorus oxychloride (SPDPC) were combined to create an environmentally friendly flame-retardant aminopyrazine spiro pentanol bisphosphonate (APPC). This solution addressed the issues of conventional flame retardant dispersion and low flame-retardant efficiency. The LOI value can reach 29.7 % with the addition of 7 wt% APPC, and the UL-94 test was able to achieve the V-0 rating. Furthermore, a remarkable decrease of 62.23 % in the peak heat release rate (pHRR), 51.23 % in the peak value of the CO production rate, and 63.57 % in the peak value of the CO<sub>2</sub> production rate was shown by the cone calorimeter experiment. The heat insulation and smoke suppression effect is also exceptional. According to the analysis of TG-FTIR, IR, XPS and SEM results, there is sufficient evidence that APPC as a phosphorus-nitrogen intumescent flame retardant (IFR), can produce beneficial effects in both catalyzing char formation and inhibiting toxic smoke production.</div></div>\",\"PeriodicalId\":7186,\"journal\":{\"name\":\"Advanced Industrial and Engineering Polymer Research\",\"volume\":\"8 2\",\"pages\":\"Pages 279-288\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Industrial and Engineering Polymer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542504824000460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504824000460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在当前高分子材料阻燃技术的研究中,添加剂阻燃剂的应用越来越广泛。本研究将2-氨基吡嗪与氧氯螺戊醇(SPDPC)合成了一种环保型阻燃剂氨吡嗪螺戊醇双膦酸酯(APPC)。该方案解决了传统阻燃剂分散性差、阻燃效率低等问题。添加7 wt%的APPC, LOI值可达29.7%,UL-94测试可达到V-0等级。此外,锥量热仪实验表明,CO2产率峰值降低了63.57%,释热率峰值降低了62.23%,CO产率峰值降低了51.23%。隔热抑烟效果也非常好。TG-FTIR、IR、XPS和SEM分析结果表明,APPC作为磷氮膨胀型阻燃剂(IFR)在催化成焦和抑制有毒烟雾方面都有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of an environmentally friendly P–N synergistic flame retardant and its effect on the properties of epoxy resin
Additive flame retardants are increasingly frequently used in the current research on flame retardant techniques for polymer materials. In this work, 2-aminopyrazine and spiro-phosphorus oxychloride (SPDPC) were combined to create an environmentally friendly flame-retardant aminopyrazine spiro pentanol bisphosphonate (APPC). This solution addressed the issues of conventional flame retardant dispersion and low flame-retardant efficiency. The LOI value can reach 29.7 % with the addition of 7 wt% APPC, and the UL-94 test was able to achieve the V-0 rating. Furthermore, a remarkable decrease of 62.23 % in the peak heat release rate (pHRR), 51.23 % in the peak value of the CO production rate, and 63.57 % in the peak value of the CO2 production rate was shown by the cone calorimeter experiment. The heat insulation and smoke suppression effect is also exceptional. According to the analysis of TG-FTIR, IR, XPS and SEM results, there is sufficient evidence that APPC as a phosphorus-nitrogen intumescent flame retardant (IFR), can produce beneficial effects in both catalyzing char formation and inhibiting toxic smoke production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Industrial and Engineering Polymer Research
Advanced Industrial and Engineering Polymer Research Materials Science-Polymers and Plastics
CiteScore
26.30
自引率
0.00%
发文量
38
审稿时长
29 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信