Qi Guo , Jingwei Lu , Yan Lu , Ying Xing , Zizhong Zhao , Fengxian Zhang
{"title":"应力腐蚀下Q355NH耐候钢和Q355钢的形态演变及力学性能退化","authors":"Qi Guo , Jingwei Lu , Yan Lu , Ying Xing , Zizhong Zhao , Fengxian Zhang","doi":"10.1016/j.engfailanal.2025.109604","DOIUrl":null,"url":null,"abstract":"<div><div>Steel structures in coastal environments are typically subject to the combined effects of stress and corrosion, which lead to more severe degradation of both morphology and mechanical properties, resulting in a reduced service life compared to corrosion under stress-free conditions. To thoroughly investigate the performance of Q355NH weathering steel under stress corrosion, accelerated neutral salt spray tests were conducted, with stress ratios ranging from 0 to 0.8 and corrosion periods up to 100 days, and Q355 steel was chosen as the control group. The evolution of pitting morphology was observed microscopically, leading to the development of evolution equations for pit size and mass loss rate for both steels. Mechanical performance tests established quantitative relationships between mass loss rate and the elastic modulus, strength, and corresponding strain. When the mass loss rate (<em>η</em>) < 21 %, the failure mode exhibits ductile fracture, but when <em>η</em> > 21 %, it transitions to brittle fracture. When <em>η</em> exceeds 13.46 % for Q355NH steel and 14.44 % for Q355 steel, the elongation no longer meets standard requirements. Furthermore, when <em>η</em> reaches 10.44 % for Q355NH steel and 8.11 % for Q355 steel, the ultimate strength decreases by 9.94 % and 16.01 % respectively, failing to satisfy strength specifications. Using mechanical-chemical theory and Faraday’s law, evolution formulas for mass loss rate and pit depth were derived and validated. It was found that <em>η</em> prediction error falls within 15 % for 95 % of Q355NH steel and 90 % of Q355 steel samples. Based on this theoretical foundation, a numerical simulation method of in-situ pit evolution enabled extensive parametric analysis, providing supplementary insights into mechanical performance under various stress ratios and corrosion periods. A general strength prediction model for Q355NH and Q355 steel under stress corrosion was subsequently developed, offering a theoretical and experimental basis for evaluating the post-corrosion mechanical performance.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"176 ","pages":"Article 109604"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological evolution and mechanical property degradation of Q355NH weathering steel and Q355 steel under stress corrosion\",\"authors\":\"Qi Guo , Jingwei Lu , Yan Lu , Ying Xing , Zizhong Zhao , Fengxian Zhang\",\"doi\":\"10.1016/j.engfailanal.2025.109604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Steel structures in coastal environments are typically subject to the combined effects of stress and corrosion, which lead to more severe degradation of both morphology and mechanical properties, resulting in a reduced service life compared to corrosion under stress-free conditions. To thoroughly investigate the performance of Q355NH weathering steel under stress corrosion, accelerated neutral salt spray tests were conducted, with stress ratios ranging from 0 to 0.8 and corrosion periods up to 100 days, and Q355 steel was chosen as the control group. The evolution of pitting morphology was observed microscopically, leading to the development of evolution equations for pit size and mass loss rate for both steels. Mechanical performance tests established quantitative relationships between mass loss rate and the elastic modulus, strength, and corresponding strain. When the mass loss rate (<em>η</em>) < 21 %, the failure mode exhibits ductile fracture, but when <em>η</em> > 21 %, it transitions to brittle fracture. When <em>η</em> exceeds 13.46 % for Q355NH steel and 14.44 % for Q355 steel, the elongation no longer meets standard requirements. Furthermore, when <em>η</em> reaches 10.44 % for Q355NH steel and 8.11 % for Q355 steel, the ultimate strength decreases by 9.94 % and 16.01 % respectively, failing to satisfy strength specifications. Using mechanical-chemical theory and Faraday’s law, evolution formulas for mass loss rate and pit depth were derived and validated. It was found that <em>η</em> prediction error falls within 15 % for 95 % of Q355NH steel and 90 % of Q355 steel samples. Based on this theoretical foundation, a numerical simulation method of in-situ pit evolution enabled extensive parametric analysis, providing supplementary insights into mechanical performance under various stress ratios and corrosion periods. A general strength prediction model for Q355NH and Q355 steel under stress corrosion was subsequently developed, offering a theoretical and experimental basis for evaluating the post-corrosion mechanical performance.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":\"176 \",\"pages\":\"Article 109604\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630725003450\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725003450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Morphological evolution and mechanical property degradation of Q355NH weathering steel and Q355 steel under stress corrosion
Steel structures in coastal environments are typically subject to the combined effects of stress and corrosion, which lead to more severe degradation of both morphology and mechanical properties, resulting in a reduced service life compared to corrosion under stress-free conditions. To thoroughly investigate the performance of Q355NH weathering steel under stress corrosion, accelerated neutral salt spray tests were conducted, with stress ratios ranging from 0 to 0.8 and corrosion periods up to 100 days, and Q355 steel was chosen as the control group. The evolution of pitting morphology was observed microscopically, leading to the development of evolution equations for pit size and mass loss rate for both steels. Mechanical performance tests established quantitative relationships between mass loss rate and the elastic modulus, strength, and corresponding strain. When the mass loss rate (η) < 21 %, the failure mode exhibits ductile fracture, but when η > 21 %, it transitions to brittle fracture. When η exceeds 13.46 % for Q355NH steel and 14.44 % for Q355 steel, the elongation no longer meets standard requirements. Furthermore, when η reaches 10.44 % for Q355NH steel and 8.11 % for Q355 steel, the ultimate strength decreases by 9.94 % and 16.01 % respectively, failing to satisfy strength specifications. Using mechanical-chemical theory and Faraday’s law, evolution formulas for mass loss rate and pit depth were derived and validated. It was found that η prediction error falls within 15 % for 95 % of Q355NH steel and 90 % of Q355 steel samples. Based on this theoretical foundation, a numerical simulation method of in-situ pit evolution enabled extensive parametric analysis, providing supplementary insights into mechanical performance under various stress ratios and corrosion periods. A general strength prediction model for Q355NH and Q355 steel under stress corrosion was subsequently developed, offering a theoretical and experimental basis for evaluating the post-corrosion mechanical performance.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.