水翼涡激振动分析与主动控制

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Jinliang Wu , Pengxiang Zhao , Xin Lan , Jinsong Leng , Yanju Liu
{"title":"水翼涡激振动分析与主动控制","authors":"Jinliang Wu ,&nbsp;Pengxiang Zhao ,&nbsp;Xin Lan ,&nbsp;Jinsong Leng ,&nbsp;Yanju Liu","doi":"10.1016/j.oceaneng.2025.121301","DOIUrl":null,"url":null,"abstract":"<div><div>Vortex-induced vibration (VIV) of hydrofoils poses significant challenges to underwater equipment and marine engineering, involving the coordinated optimization of structural safety and acoustic performance. This study proposes an active control strategy based on piezoelectric materials to effectively suppress vibration and noise through vortex shedding frequency modulation under fluid-structure interaction conditions. By establishing a bidirectional fluid-structure coupling simulation model, we systematically investigated the torsional vibration response and resonance mechanisms of hydrofoils under various flow velocities, revealing dynamic influence patterns of velocity variations on wake vortex shedding and acoustic field characteristics. The mechanism of active control on structural vibration energy dissipation and flow field pressure distribution was elucidated through excitation amplitude and frequency regulation. Experimental studies employing Macro Fiber Composite (MFC) and particle image velocimetry (PIV) validated the active modulation characteristics of wake vortex shedding. Results demonstrate that piezoelectric excitation can significantly alter boundary layer evolution on hydrofoil surfaces, adjust vortex shedding frequencies, mitigate resonance risks, and optimize acoustic field distribution. This research provides a novel technical approach for vibration control in complex fluid-structure coupling systems and active acoustic signature regulation.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"330 ","pages":"Article 121301"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and active control of vortex-induced vibration of hydrofoil\",\"authors\":\"Jinliang Wu ,&nbsp;Pengxiang Zhao ,&nbsp;Xin Lan ,&nbsp;Jinsong Leng ,&nbsp;Yanju Liu\",\"doi\":\"10.1016/j.oceaneng.2025.121301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vortex-induced vibration (VIV) of hydrofoils poses significant challenges to underwater equipment and marine engineering, involving the coordinated optimization of structural safety and acoustic performance. This study proposes an active control strategy based on piezoelectric materials to effectively suppress vibration and noise through vortex shedding frequency modulation under fluid-structure interaction conditions. By establishing a bidirectional fluid-structure coupling simulation model, we systematically investigated the torsional vibration response and resonance mechanisms of hydrofoils under various flow velocities, revealing dynamic influence patterns of velocity variations on wake vortex shedding and acoustic field characteristics. The mechanism of active control on structural vibration energy dissipation and flow field pressure distribution was elucidated through excitation amplitude and frequency regulation. Experimental studies employing Macro Fiber Composite (MFC) and particle image velocimetry (PIV) validated the active modulation characteristics of wake vortex shedding. Results demonstrate that piezoelectric excitation can significantly alter boundary layer evolution on hydrofoil surfaces, adjust vortex shedding frequencies, mitigate resonance risks, and optimize acoustic field distribution. This research provides a novel technical approach for vibration control in complex fluid-structure coupling systems and active acoustic signature regulation.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"330 \",\"pages\":\"Article 121301\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825010145\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825010145","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

水翼的涡激振动是水下设备和海洋工程面临的重大挑战,涉及结构安全性和声学性能的协调优化。本研究提出了一种基于压电材料的主动控制策略,在流固耦合条件下,通过旋涡脱落调频有效抑制振动和噪声。通过建立双向流固耦合仿真模型,系统研究了不同流速下水翼的扭转振动响应和共振机理,揭示了流速变化对尾流涡脱落和声场特性的动态影响规律。阐述了通过激励幅值和频率调节主动控制结构振动能量耗散和流场压力分布的机理。采用宏纤维复合材料(MFC)和粒子图像测速技术(PIV)的实验研究验证了尾流脱落的主动调制特性。结果表明,压电激励能显著改变水翼表面边界层演化,调节旋涡脱落频率,减轻共振风险,优化声场分布。该研究为复杂流固耦合系统的振动控制和声特征主动调节提供了一种新的技术途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and active control of vortex-induced vibration of hydrofoil
Vortex-induced vibration (VIV) of hydrofoils poses significant challenges to underwater equipment and marine engineering, involving the coordinated optimization of structural safety and acoustic performance. This study proposes an active control strategy based on piezoelectric materials to effectively suppress vibration and noise through vortex shedding frequency modulation under fluid-structure interaction conditions. By establishing a bidirectional fluid-structure coupling simulation model, we systematically investigated the torsional vibration response and resonance mechanisms of hydrofoils under various flow velocities, revealing dynamic influence patterns of velocity variations on wake vortex shedding and acoustic field characteristics. The mechanism of active control on structural vibration energy dissipation and flow field pressure distribution was elucidated through excitation amplitude and frequency regulation. Experimental studies employing Macro Fiber Composite (MFC) and particle image velocimetry (PIV) validated the active modulation characteristics of wake vortex shedding. Results demonstrate that piezoelectric excitation can significantly alter boundary layer evolution on hydrofoil surfaces, adjust vortex shedding frequencies, mitigate resonance risks, and optimize acoustic field distribution. This research provides a novel technical approach for vibration control in complex fluid-structure coupling systems and active acoustic signature regulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信