Zhenxin Li , Yongqiang Zhu , Minli Zhang , Zhiling Li , Zhiguang Chang , Shichen Kang
{"title":"应用海绵铁碳从污泥混合物中富集厌氧氨氧化菌并耦合反硝化技术降解工业废水","authors":"Zhenxin Li , Yongqiang Zhu , Minli Zhang , Zhiling Li , Zhiguang Chang , Shichen Kang","doi":"10.1016/j.jconhyd.2025.104571","DOIUrl":null,"url":null,"abstract":"<div><div>For the treatment of industrial wastewater, coupled iron‑carbon micro-electrolysis (ICME) with anaerobic ammonia oxidation (anammox) and denitrification was optimized under the following conditions: Fe/C = 2, C/N ≤ 2, and the temperature was 30 °C. The coupled ICME enriched ammonia-oxidizing bacteria (AnAOB) and denitrifying bacteria (DB) in the mixed sludge on the 76th day of the present experiment. Stable operation was achieved on the 78th day. The COD and TN removal rates during the operation were 86.20 % and 87.12 %, respectively, while the control group (without iron and carbon) had removal rates of 74.30 % and 60.31 % which were 11.9 % and 26.81 % higher, respectively. Notably, the abundance of AnAOB in the system increased from 0.44 % to 1.43 % during the operation from day 76 to day 100. High-throughput sequencing demonstrated that <em>Candidatus_Kuenenia</em> was a key anaerobic ammonia-oxidizing bacterium. Based on the experimental results, the ICME process could rapidly enrich anaerobic ammonia-oxidizing bacteria to change the microbial community structure of the sludge under the water quality conditions of industrial wastewater and increasing the tolerance of certain DB and <em>Candidatus_Kuenenia</em> to water quality. By combining with iron‑carbon, the rapid modification of mixed sludge was achieved, and the iron‑carbon micro-electrolysis coupled denitrification anaerobic ammonia oxidation process was established, which provides a certain reference value for treating industrial wastewater.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"272 ","pages":"Article 104571"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of sponge iron-carbon to enrich anaerobic ammonia-oxidizing bacteria from sludge mixture and coupled denitrification for degradation of industrial wastewater\",\"authors\":\"Zhenxin Li , Yongqiang Zhu , Minli Zhang , Zhiling Li , Zhiguang Chang , Shichen Kang\",\"doi\":\"10.1016/j.jconhyd.2025.104571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the treatment of industrial wastewater, coupled iron‑carbon micro-electrolysis (ICME) with anaerobic ammonia oxidation (anammox) and denitrification was optimized under the following conditions: Fe/C = 2, C/N ≤ 2, and the temperature was 30 °C. The coupled ICME enriched ammonia-oxidizing bacteria (AnAOB) and denitrifying bacteria (DB) in the mixed sludge on the 76th day of the present experiment. Stable operation was achieved on the 78th day. The COD and TN removal rates during the operation were 86.20 % and 87.12 %, respectively, while the control group (without iron and carbon) had removal rates of 74.30 % and 60.31 % which were 11.9 % and 26.81 % higher, respectively. Notably, the abundance of AnAOB in the system increased from 0.44 % to 1.43 % during the operation from day 76 to day 100. High-throughput sequencing demonstrated that <em>Candidatus_Kuenenia</em> was a key anaerobic ammonia-oxidizing bacterium. Based on the experimental results, the ICME process could rapidly enrich anaerobic ammonia-oxidizing bacteria to change the microbial community structure of the sludge under the water quality conditions of industrial wastewater and increasing the tolerance of certain DB and <em>Candidatus_Kuenenia</em> to water quality. By combining with iron‑carbon, the rapid modification of mixed sludge was achieved, and the iron‑carbon micro-electrolysis coupled denitrification anaerobic ammonia oxidation process was established, which provides a certain reference value for treating industrial wastewater.</div></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"272 \",\"pages\":\"Article 104571\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772225000762\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000762","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Application of sponge iron-carbon to enrich anaerobic ammonia-oxidizing bacteria from sludge mixture and coupled denitrification for degradation of industrial wastewater
For the treatment of industrial wastewater, coupled iron‑carbon micro-electrolysis (ICME) with anaerobic ammonia oxidation (anammox) and denitrification was optimized under the following conditions: Fe/C = 2, C/N ≤ 2, and the temperature was 30 °C. The coupled ICME enriched ammonia-oxidizing bacteria (AnAOB) and denitrifying bacteria (DB) in the mixed sludge on the 76th day of the present experiment. Stable operation was achieved on the 78th day. The COD and TN removal rates during the operation were 86.20 % and 87.12 %, respectively, while the control group (without iron and carbon) had removal rates of 74.30 % and 60.31 % which were 11.9 % and 26.81 % higher, respectively. Notably, the abundance of AnAOB in the system increased from 0.44 % to 1.43 % during the operation from day 76 to day 100. High-throughput sequencing demonstrated that Candidatus_Kuenenia was a key anaerobic ammonia-oxidizing bacterium. Based on the experimental results, the ICME process could rapidly enrich anaerobic ammonia-oxidizing bacteria to change the microbial community structure of the sludge under the water quality conditions of industrial wastewater and increasing the tolerance of certain DB and Candidatus_Kuenenia to water quality. By combining with iron‑carbon, the rapid modification of mixed sludge was achieved, and the iron‑carbon micro-electrolysis coupled denitrification anaerobic ammonia oxidation process was established, which provides a certain reference value for treating industrial wastewater.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.