Estefanía Vega Puga , Volker Wachtendorf , Anja Kömmling , Stefan Brendelberger , Matthias Jaunich , Christian Sattler
{"title":"FKM和FFKM o型环高温热氧化老化寿命预测及降解评价","authors":"Estefanía Vega Puga , Volker Wachtendorf , Anja Kömmling , Stefan Brendelberger , Matthias Jaunich , Christian Sattler","doi":"10.1016/j.polymertesting.2025.108820","DOIUrl":null,"url":null,"abstract":"<div><div>To support the development of solar reactor technologies for hydrogen production, this study investigates the thermo-oxidative degradation mechanisms of fluorinated elastomers and predicts their lifetimes at high temperatures (200–300 °C) consistent with the application requirements. An accelerated ageing programme is conducted with FKM and FFKM O-rings and flat samples for up to 21 days. Optical microscopy is used to analyse the exposed seals' morphological changes, while IR microscopy is utilised to investigate the underlying chemical degradation mechanisms of both elastomers. Findings suggest that FKM's degradation arises from dehydrofluorination of the polymer, followed by chain scission and backbone cleavage as a result of the oxidation of newly formed C=C double bonds. FFKM's degradation is primarily associated with chain scission, but there is also indication that post-curing processes may occur during material ageing. Furthermore, hardness, equilibrium compression set (CS), continuous compression stress relaxation (CSR) and leakage rate tests are used to evaluate changes in the mechanical properties and sealing performance of the elastomers. Equilibrium CS data is extrapolated using time-temperature shifts (TTS) and used to derive an end-of-life criterion of 75 % equilibrium CS, which correlates to leakage rates higher than a predetermined threshold. Service lifetime predictions of FKM and FFKM O-rings at several temperatures are performed and a seal operating temperature of 200 °C is suggested, which ensures reasonable O-ring replacement intervals of more than half a year in the solar reactor for both considered materials.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"147 ","pages":"Article 108820"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifetime prediction and degradation assessment of FKM and FFKM O-rings under high temperature thermo-oxidative ageing\",\"authors\":\"Estefanía Vega Puga , Volker Wachtendorf , Anja Kömmling , Stefan Brendelberger , Matthias Jaunich , Christian Sattler\",\"doi\":\"10.1016/j.polymertesting.2025.108820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To support the development of solar reactor technologies for hydrogen production, this study investigates the thermo-oxidative degradation mechanisms of fluorinated elastomers and predicts their lifetimes at high temperatures (200–300 °C) consistent with the application requirements. An accelerated ageing programme is conducted with FKM and FFKM O-rings and flat samples for up to 21 days. Optical microscopy is used to analyse the exposed seals' morphological changes, while IR microscopy is utilised to investigate the underlying chemical degradation mechanisms of both elastomers. Findings suggest that FKM's degradation arises from dehydrofluorination of the polymer, followed by chain scission and backbone cleavage as a result of the oxidation of newly formed C=C double bonds. FFKM's degradation is primarily associated with chain scission, but there is also indication that post-curing processes may occur during material ageing. Furthermore, hardness, equilibrium compression set (CS), continuous compression stress relaxation (CSR) and leakage rate tests are used to evaluate changes in the mechanical properties and sealing performance of the elastomers. Equilibrium CS data is extrapolated using time-temperature shifts (TTS) and used to derive an end-of-life criterion of 75 % equilibrium CS, which correlates to leakage rates higher than a predetermined threshold. Service lifetime predictions of FKM and FFKM O-rings at several temperatures are performed and a seal operating temperature of 200 °C is suggested, which ensures reasonable O-ring replacement intervals of more than half a year in the solar reactor for both considered materials.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"147 \",\"pages\":\"Article 108820\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941825001345\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825001345","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Lifetime prediction and degradation assessment of FKM and FFKM O-rings under high temperature thermo-oxidative ageing
To support the development of solar reactor technologies for hydrogen production, this study investigates the thermo-oxidative degradation mechanisms of fluorinated elastomers and predicts their lifetimes at high temperatures (200–300 °C) consistent with the application requirements. An accelerated ageing programme is conducted with FKM and FFKM O-rings and flat samples for up to 21 days. Optical microscopy is used to analyse the exposed seals' morphological changes, while IR microscopy is utilised to investigate the underlying chemical degradation mechanisms of both elastomers. Findings suggest that FKM's degradation arises from dehydrofluorination of the polymer, followed by chain scission and backbone cleavage as a result of the oxidation of newly formed C=C double bonds. FFKM's degradation is primarily associated with chain scission, but there is also indication that post-curing processes may occur during material ageing. Furthermore, hardness, equilibrium compression set (CS), continuous compression stress relaxation (CSR) and leakage rate tests are used to evaluate changes in the mechanical properties and sealing performance of the elastomers. Equilibrium CS data is extrapolated using time-temperature shifts (TTS) and used to derive an end-of-life criterion of 75 % equilibrium CS, which correlates to leakage rates higher than a predetermined threshold. Service lifetime predictions of FKM and FFKM O-rings at several temperatures are performed and a seal operating temperature of 200 °C is suggested, which ensures reasonable O-ring replacement intervals of more than half a year in the solar reactor for both considered materials.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.