{"title":"酶法比色法检测水环境中有机磷和氨基甲酸酯类农药研究进展","authors":"Eliasu Issaka, Lynsey Melville, Adnan Fazal","doi":"10.1016/j.pestbp.2025.106423","DOIUrl":null,"url":null,"abstract":"<div><div>To monitor pesticides, which have grown to be a significant environmental and public health concern, sensitive, selective, and economical analytical tools must be developed. With advantages including high sensitivity, quick processing, and the potential for on-site monitoring, enzymatic colourimetric assays have surfaced as a potential substitute for conventional pesticide detection, particularly for organophosphate (OPPs) and carbamate pesticide detection. The toxicological effects of pesticides on humans and the environment are examined first in this review, followed by examining the concepts and mechanisms behind enzyme activity and colourimetric methods. Besides, single and double-enzyme-mediated colourimetric techniques are also studied to detect OPPs and carbamate pesticides. Furthermore, colourimetric smartphone platforms and paper-based devices have both garnered a lot of attention. These advanced approaches offer many pesticide detection options, from high-sensitivity lab-based procedures to on-site and in-field technologies. The fourth section of this review employs newly published studies to explore the applicability of these approaches for onsite OPPs and carbamate pesticide detection. Lastly, the challenges associated with enzymatic colourimetric assays, such as matrix effects and enzyme stability, and prospects for current and future research are discussed.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"211 ","pages":"Article 106423"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on enzymatic colorimetric assays for organophosphate and carbamate pesticides detection in water environments\",\"authors\":\"Eliasu Issaka, Lynsey Melville, Adnan Fazal\",\"doi\":\"10.1016/j.pestbp.2025.106423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To monitor pesticides, which have grown to be a significant environmental and public health concern, sensitive, selective, and economical analytical tools must be developed. With advantages including high sensitivity, quick processing, and the potential for on-site monitoring, enzymatic colourimetric assays have surfaced as a potential substitute for conventional pesticide detection, particularly for organophosphate (OPPs) and carbamate pesticide detection. The toxicological effects of pesticides on humans and the environment are examined first in this review, followed by examining the concepts and mechanisms behind enzyme activity and colourimetric methods. Besides, single and double-enzyme-mediated colourimetric techniques are also studied to detect OPPs and carbamate pesticides. Furthermore, colourimetric smartphone platforms and paper-based devices have both garnered a lot of attention. These advanced approaches offer many pesticide detection options, from high-sensitivity lab-based procedures to on-site and in-field technologies. The fourth section of this review employs newly published studies to explore the applicability of these approaches for onsite OPPs and carbamate pesticide detection. Lastly, the challenges associated with enzymatic colourimetric assays, such as matrix effects and enzyme stability, and prospects for current and future research are discussed.</div></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":\"211 \",\"pages\":\"Article 106423\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357525001361\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525001361","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A review on enzymatic colorimetric assays for organophosphate and carbamate pesticides detection in water environments
To monitor pesticides, which have grown to be a significant environmental and public health concern, sensitive, selective, and economical analytical tools must be developed. With advantages including high sensitivity, quick processing, and the potential for on-site monitoring, enzymatic colourimetric assays have surfaced as a potential substitute for conventional pesticide detection, particularly for organophosphate (OPPs) and carbamate pesticide detection. The toxicological effects of pesticides on humans and the environment are examined first in this review, followed by examining the concepts and mechanisms behind enzyme activity and colourimetric methods. Besides, single and double-enzyme-mediated colourimetric techniques are also studied to detect OPPs and carbamate pesticides. Furthermore, colourimetric smartphone platforms and paper-based devices have both garnered a lot of attention. These advanced approaches offer many pesticide detection options, from high-sensitivity lab-based procedures to on-site and in-field technologies. The fourth section of this review employs newly published studies to explore the applicability of these approaches for onsite OPPs and carbamate pesticide detection. Lastly, the challenges associated with enzymatic colourimetric assays, such as matrix effects and enzyme stability, and prospects for current and future research are discussed.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.