{"title":"绘制和解码神经系统功能中的神经肽信号网络","authors":"Isabel Beets, Jan Watteyne","doi":"10.1016/j.conb.2025.103027","DOIUrl":null,"url":null,"abstract":"<div><div>Neuropeptides are widespread signaling molecules that are central to brain function in all animals. Recent advances in profiling their expression across neural circuits, in conjunction with detailed biochemical characterization of their interactions with receptors, have made it feasible to build brain-wide maps of neuropeptide signaling. Here, we discuss how recent reconstructions of neuropeptide signaling networks, from mammalian brain regions to nervous system-wide maps in <em>C. elegans</em>, reveal conserved organizational features of neuropeptidergic networks. Furthermore, we review recent technical breakthroughs in <em>in vivo</em> sensors for peptide release, receptor binding, and intracellular signaling that bring a mechanistic understanding of neuropeptide networks within experimental reach. Finally, we describe how the architecture of neuropeptide signaling networks can change throughout evolution or even the lifetime of individuals, which highlights the complexities that must be considered to understand how these molecules modulate circuit activity and behavior across different contexts.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"92 ","pages":"Article 103027"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping and decoding neuropeptide signaling networks in nervous system function\",\"authors\":\"Isabel Beets, Jan Watteyne\",\"doi\":\"10.1016/j.conb.2025.103027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neuropeptides are widespread signaling molecules that are central to brain function in all animals. Recent advances in profiling their expression across neural circuits, in conjunction with detailed biochemical characterization of their interactions with receptors, have made it feasible to build brain-wide maps of neuropeptide signaling. Here, we discuss how recent reconstructions of neuropeptide signaling networks, from mammalian brain regions to nervous system-wide maps in <em>C. elegans</em>, reveal conserved organizational features of neuropeptidergic networks. Furthermore, we review recent technical breakthroughs in <em>in vivo</em> sensors for peptide release, receptor binding, and intracellular signaling that bring a mechanistic understanding of neuropeptide networks within experimental reach. Finally, we describe how the architecture of neuropeptide signaling networks can change throughout evolution or even the lifetime of individuals, which highlights the complexities that must be considered to understand how these molecules modulate circuit activity and behavior across different contexts.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"92 \",\"pages\":\"Article 103027\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438825000583\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000583","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mapping and decoding neuropeptide signaling networks in nervous system function
Neuropeptides are widespread signaling molecules that are central to brain function in all animals. Recent advances in profiling their expression across neural circuits, in conjunction with detailed biochemical characterization of their interactions with receptors, have made it feasible to build brain-wide maps of neuropeptide signaling. Here, we discuss how recent reconstructions of neuropeptide signaling networks, from mammalian brain regions to nervous system-wide maps in C. elegans, reveal conserved organizational features of neuropeptidergic networks. Furthermore, we review recent technical breakthroughs in in vivo sensors for peptide release, receptor binding, and intracellular signaling that bring a mechanistic understanding of neuropeptide networks within experimental reach. Finally, we describe how the architecture of neuropeptide signaling networks can change throughout evolution or even the lifetime of individuals, which highlights the complexities that must be considered to understand how these molecules modulate circuit activity and behavior across different contexts.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience