{"title":"电路形成和可塑性中神经元活动依赖性基因程序的染色质调控","authors":"Gabriele Pumo , Filippo M. Rijli","doi":"10.1016/j.conb.2025.103024","DOIUrl":null,"url":null,"abstract":"<div><div>Neuronal activity-dependent transcription is crucial for the development and plasticity of neuronal circuits. At the chromatin level, the induction of neuronal activity-regulated genes is orchestrated through various mechanisms, including the deposition of histone modifications at regulatory elements, the binding of transcriptional activators and repressors, chromatin remodeling, and the control of 3D genome architecture. Here, we review our current understanding of how chromatin mechanisms regulate temporally distinct transcriptional waves following neuronal stimulation and allow neurons to mount cell type-specific and stimulus-specific transcriptional responses. We also highlight a specific epigenetic mechanism in developing neurons that maintains immediate early genes (IEGs) in an inactive though poised state, while simultaneously preparing them for rapid activation in response to sensory stimulation. We discuss how chromatin regulation mechanisms play a crucial role in controlling activity-regulated gene expression, enabling the implementation of precise gene expression programs during different stages of neural circuit development and plasticity.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"92 ","pages":"Article 103024"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatin regulation of neuronal activity-dependent gene programs in circuit formation and plasticity\",\"authors\":\"Gabriele Pumo , Filippo M. Rijli\",\"doi\":\"10.1016/j.conb.2025.103024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neuronal activity-dependent transcription is crucial for the development and plasticity of neuronal circuits. At the chromatin level, the induction of neuronal activity-regulated genes is orchestrated through various mechanisms, including the deposition of histone modifications at regulatory elements, the binding of transcriptional activators and repressors, chromatin remodeling, and the control of 3D genome architecture. Here, we review our current understanding of how chromatin mechanisms regulate temporally distinct transcriptional waves following neuronal stimulation and allow neurons to mount cell type-specific and stimulus-specific transcriptional responses. We also highlight a specific epigenetic mechanism in developing neurons that maintains immediate early genes (IEGs) in an inactive though poised state, while simultaneously preparing them for rapid activation in response to sensory stimulation. We discuss how chromatin regulation mechanisms play a crucial role in controlling activity-regulated gene expression, enabling the implementation of precise gene expression programs during different stages of neural circuit development and plasticity.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"92 \",\"pages\":\"Article 103024\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438825000558\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000558","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Chromatin regulation of neuronal activity-dependent gene programs in circuit formation and plasticity
Neuronal activity-dependent transcription is crucial for the development and plasticity of neuronal circuits. At the chromatin level, the induction of neuronal activity-regulated genes is orchestrated through various mechanisms, including the deposition of histone modifications at regulatory elements, the binding of transcriptional activators and repressors, chromatin remodeling, and the control of 3D genome architecture. Here, we review our current understanding of how chromatin mechanisms regulate temporally distinct transcriptional waves following neuronal stimulation and allow neurons to mount cell type-specific and stimulus-specific transcriptional responses. We also highlight a specific epigenetic mechanism in developing neurons that maintains immediate early genes (IEGs) in an inactive though poised state, while simultaneously preparing them for rapid activation in response to sensory stimulation. We discuss how chromatin regulation mechanisms play a crucial role in controlling activity-regulated gene expression, enabling the implementation of precise gene expression programs during different stages of neural circuit development and plasticity.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience