Dipalee D․Rane Chaudhari , Manisha S. Bhende , Aadam Quraishi , Azzah AlGhamdi , Ismail Keshta , Mukesh Soni , Brajesh Kumar Singh , Haewon Byeon , Mohammad Shabaz
{"title":"在基于物联网技术的医疗保健 5.0 中提高安全性和能效的 PKI 和尖峰神经网络混合方法","authors":"Dipalee D․Rane Chaudhari , Manisha S. Bhende , Aadam Quraishi , Azzah AlGhamdi , Ismail Keshta , Mukesh Soni , Brajesh Kumar Singh , Haewon Byeon , Mohammad Shabaz","doi":"10.1016/j.slast.2025.100284","DOIUrl":null,"url":null,"abstract":"<div><div>In the rapidly evolving field of healthcare 5.0, the Internet of Medical Things (IoMT) is expected to be an enabler that allows smart medical devices to collaborate and communicate with healthcare networks to speed up procedures, enhance care, and improve disease management. However, one of the critical issues for these networks still remains the secure and energy-efficient transmission of sensitive patient data. Thus, a novel security framework is proposed in this work, in which a Public Key Infrastructure- Energy-Efficient Routing Protocol (PKI-EERP) with a Zebra Optimization Algorithm (ZOA) is incorporated in spiking neural networks. The method combines data security robustness of the spiking neural networks to detect anomalies and check for access control purposes, with the PKI encryption to provide safe encryption and key management. The ZOA optimizes energy consumption in WSNs, and as a result transmission energy is significantly reduced up to 35 % compared to other implementations, and the network lifetime is increased by about 30 % through effective load balancing. It enhances both the privacy and energy efficiency that are essential for the safe and reliable operation of IoMT systems in contemporary healthcare environments, thus improving patient outcomes as well as standards of operations.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"32 ","pages":"Article 100284"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid PKI and spiking neural network approach for enhancing security and energy efficiency in IoMT-based healthcare 5.0\",\"authors\":\"Dipalee D․Rane Chaudhari , Manisha S. Bhende , Aadam Quraishi , Azzah AlGhamdi , Ismail Keshta , Mukesh Soni , Brajesh Kumar Singh , Haewon Byeon , Mohammad Shabaz\",\"doi\":\"10.1016/j.slast.2025.100284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the rapidly evolving field of healthcare 5.0, the Internet of Medical Things (IoMT) is expected to be an enabler that allows smart medical devices to collaborate and communicate with healthcare networks to speed up procedures, enhance care, and improve disease management. However, one of the critical issues for these networks still remains the secure and energy-efficient transmission of sensitive patient data. Thus, a novel security framework is proposed in this work, in which a Public Key Infrastructure- Energy-Efficient Routing Protocol (PKI-EERP) with a Zebra Optimization Algorithm (ZOA) is incorporated in spiking neural networks. The method combines data security robustness of the spiking neural networks to detect anomalies and check for access control purposes, with the PKI encryption to provide safe encryption and key management. The ZOA optimizes energy consumption in WSNs, and as a result transmission energy is significantly reduced up to 35 % compared to other implementations, and the network lifetime is increased by about 30 % through effective load balancing. It enhances both the privacy and energy efficiency that are essential for the safe and reliable operation of IoMT systems in contemporary healthcare environments, thus improving patient outcomes as well as standards of operations.</div></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"32 \",\"pages\":\"Article 100284\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630325000421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630325000421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A hybrid PKI and spiking neural network approach for enhancing security and energy efficiency in IoMT-based healthcare 5.0
In the rapidly evolving field of healthcare 5.0, the Internet of Medical Things (IoMT) is expected to be an enabler that allows smart medical devices to collaborate and communicate with healthcare networks to speed up procedures, enhance care, and improve disease management. However, one of the critical issues for these networks still remains the secure and energy-efficient transmission of sensitive patient data. Thus, a novel security framework is proposed in this work, in which a Public Key Infrastructure- Energy-Efficient Routing Protocol (PKI-EERP) with a Zebra Optimization Algorithm (ZOA) is incorporated in spiking neural networks. The method combines data security robustness of the spiking neural networks to detect anomalies and check for access control purposes, with the PKI encryption to provide safe encryption and key management. The ZOA optimizes energy consumption in WSNs, and as a result transmission energy is significantly reduced up to 35 % compared to other implementations, and the network lifetime is increased by about 30 % through effective load balancing. It enhances both the privacy and energy efficiency that are essential for the safe and reliable operation of IoMT systems in contemporary healthcare environments, thus improving patient outcomes as well as standards of operations.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.