NSVineCopula:非平稳多变量相关性建模的R包

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Q. Zhang , Y.P. Li , G.H. Huang , X.M. Huang , H. Wang , Z. Wang , Z.P. Xu , Y.Y. Wang , Z.Y. Shen
{"title":"NSVineCopula:非平稳多变量相关性建模的R包","authors":"Q. Zhang ,&nbsp;Y.P. Li ,&nbsp;G.H. Huang ,&nbsp;X.M. Huang ,&nbsp;H. Wang ,&nbsp;Z. Wang ,&nbsp;Z.P. Xu ,&nbsp;Y.Y. Wang ,&nbsp;Z.Y. Shen","doi":"10.1016/j.envsoft.2025.106474","DOIUrl":null,"url":null,"abstract":"<div><div>A vine copula is a flexible method for multivariate dependence simulations that assumes stationarity. However, only a few studies have focused on non-stationarity and comprehensively developed nonstationary vine copula functions. In this study, a novel R package, NSVineCopula was developed and presented. Canonical-vine and Drawable-vine structure with 36 bivariate copula functions were considered in NSVineCopula. This package is capable of capturing non-stationary multivariate dependence, providing time-varying parameters for each bivariate copula, and quantifying the conditional probability. Notably, NSVineCopula provides a simple way for sampling non-stationary vine copulas. The capability of NSVineCopula was evaluated through two case studies: (1) agricultural drought risk assessment under compound dry-hot extreme conditions and water level prediction. The results demonstrate the advantages of NSVineCopula in non-stationary multivariate dependence analysis, and highlights the potential of NSVineCopula in many fields. Overall, NSVineCopula can provide valuable and robust functionalities for modeling nonstationary multivariate dependence.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"190 ","pages":"Article 106474"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NSVineCopula: R package for modeling non-stationary multivariate dependence\",\"authors\":\"Q. Zhang ,&nbsp;Y.P. Li ,&nbsp;G.H. Huang ,&nbsp;X.M. Huang ,&nbsp;H. Wang ,&nbsp;Z. Wang ,&nbsp;Z.P. Xu ,&nbsp;Y.Y. Wang ,&nbsp;Z.Y. Shen\",\"doi\":\"10.1016/j.envsoft.2025.106474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A vine copula is a flexible method for multivariate dependence simulations that assumes stationarity. However, only a few studies have focused on non-stationarity and comprehensively developed nonstationary vine copula functions. In this study, a novel R package, NSVineCopula was developed and presented. Canonical-vine and Drawable-vine structure with 36 bivariate copula functions were considered in NSVineCopula. This package is capable of capturing non-stationary multivariate dependence, providing time-varying parameters for each bivariate copula, and quantifying the conditional probability. Notably, NSVineCopula provides a simple way for sampling non-stationary vine copulas. The capability of NSVineCopula was evaluated through two case studies: (1) agricultural drought risk assessment under compound dry-hot extreme conditions and water level prediction. The results demonstrate the advantages of NSVineCopula in non-stationary multivariate dependence analysis, and highlights the potential of NSVineCopula in many fields. Overall, NSVineCopula can provide valuable and robust functionalities for modeling nonstationary multivariate dependence.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"190 \",\"pages\":\"Article 106474\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001586\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001586","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

vine copula是一种灵活的多变量相关性模拟方法。然而,只有少数研究关注非平稳,并全面发展了非平稳的藤联函数。在这项研究中,一个新的R包,NSVineCopula开发并提出。在NSVineCopula中考虑了具有36个二元联结函数的正则-藤和可拉-藤结构。该包能够捕获非平稳的多变量依赖,为每个二元联结提供时变参数,并量化条件概率。值得注意的是,NSVineCopula提供了一种简单的方法来采样非平稳的藤丛。通过两个案例对NSVineCopula的能力进行了评价:(1)复合干热极端条件下的农业干旱风险评估和水位预测。结果表明了NSVineCopula在非平稳多变量依赖分析中的优势,并突出了NSVineCopula在许多领域的潜力。总体而言,NSVineCopula可以为非平稳多变量依赖的建模提供有价值的鲁棒功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NSVineCopula: R package for modeling non-stationary multivariate dependence
A vine copula is a flexible method for multivariate dependence simulations that assumes stationarity. However, only a few studies have focused on non-stationarity and comprehensively developed nonstationary vine copula functions. In this study, a novel R package, NSVineCopula was developed and presented. Canonical-vine and Drawable-vine structure with 36 bivariate copula functions were considered in NSVineCopula. This package is capable of capturing non-stationary multivariate dependence, providing time-varying parameters for each bivariate copula, and quantifying the conditional probability. Notably, NSVineCopula provides a simple way for sampling non-stationary vine copulas. The capability of NSVineCopula was evaluated through two case studies: (1) agricultural drought risk assessment under compound dry-hot extreme conditions and water level prediction. The results demonstrate the advantages of NSVineCopula in non-stationary multivariate dependence analysis, and highlights the potential of NSVineCopula in many fields. Overall, NSVineCopula can provide valuable and robust functionalities for modeling nonstationary multivariate dependence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信