Nitin Bhardwaj , Sumit Rajaura , Ashutosh Singh , Rambabu , Nivedita , Mohammad Z. Ahmed
{"title":"双酚a诱导的卵巢癌:上皮多样性、凋亡、抗氧化和抗炎机制的变化","authors":"Nitin Bhardwaj , Sumit Rajaura , Ashutosh Singh , Rambabu , Nivedita , Mohammad Z. Ahmed","doi":"10.1016/j.reprotox.2025.108909","DOIUrl":null,"url":null,"abstract":"<div><div>This research was designed to study the carcinogenic mechanisms of BPA on ovarian epithelial cells. For four months, mice were treated with low (LD, 1 mg/kg) and high (HD, 5 mg/kg of body weight) doses of BPA on alternate days through oral gavage; the control group was given corn oil through gavaging during 4 months. The histopathological data suggest that repeated BPA administration induces a borderline epithelial neoplasm with altered epithelial morphology with branching papillae. Various epithelial cells (ECs) in ovaries were identified by flow cytometry based on anti-mouse CD74 and podoplanin (PDPL) receptors expression. Three different populations of ovarian epithelial cells were identified: epithelial cells type 1 (PDPL<sup>+</sup>CD74<sup>-</sup>,EC1), epithelial cells type 2 (PDPL<sup>-</sup>CD74<sup>+</sup><sub>,</sub> EC2), and transition epithelial cells (PDPL<sup>+</sup>CD74<sup>+</sup>, TEC). The EC1 decreased, but EC2 was increased in BPA-exposed mice. The population of TEC was comparable to that in the control group at the low dose (LD) but decreased in the high dose (HD) BPA-treated groups. A significant increase in PDPL, CD74 receptor expression and apoptosis and necrosis in BPA-treated ovarian cells was seen. The RT-qPCR results suggest that the relative expression levels of pro-apoptotic (Bax and Casp3) and anti-apoptotic Cytc were markedly decreased, but Bcl2 expression was increased. The anti-inflammatory (IFN-γ, TNF-α, TGF-β, IL-6) gene expression was reduced, but NF-kB expression was increased. Hypoxia regulator (Hif-1α and Nrf2) and tumour suppressor genes (p53 and p21) were also decreased. Thus, BPA exposure changes EC diversity, induces mortality and alters antioxidant, apoptotic and inflammatory gene expression in ovary.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"135 ","pages":"Article 108909"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bisphenol-A-induced ovarian cancer: Changes in epithelial diversity, apoptosis, antioxidant and anti-inflammatory mechanisms\",\"authors\":\"Nitin Bhardwaj , Sumit Rajaura , Ashutosh Singh , Rambabu , Nivedita , Mohammad Z. Ahmed\",\"doi\":\"10.1016/j.reprotox.2025.108909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research was designed to study the carcinogenic mechanisms of BPA on ovarian epithelial cells. For four months, mice were treated with low (LD, 1 mg/kg) and high (HD, 5 mg/kg of body weight) doses of BPA on alternate days through oral gavage; the control group was given corn oil through gavaging during 4 months. The histopathological data suggest that repeated BPA administration induces a borderline epithelial neoplasm with altered epithelial morphology with branching papillae. Various epithelial cells (ECs) in ovaries were identified by flow cytometry based on anti-mouse CD74 and podoplanin (PDPL) receptors expression. Three different populations of ovarian epithelial cells were identified: epithelial cells type 1 (PDPL<sup>+</sup>CD74<sup>-</sup>,EC1), epithelial cells type 2 (PDPL<sup>-</sup>CD74<sup>+</sup><sub>,</sub> EC2), and transition epithelial cells (PDPL<sup>+</sup>CD74<sup>+</sup>, TEC). The EC1 decreased, but EC2 was increased in BPA-exposed mice. The population of TEC was comparable to that in the control group at the low dose (LD) but decreased in the high dose (HD) BPA-treated groups. A significant increase in PDPL, CD74 receptor expression and apoptosis and necrosis in BPA-treated ovarian cells was seen. The RT-qPCR results suggest that the relative expression levels of pro-apoptotic (Bax and Casp3) and anti-apoptotic Cytc were markedly decreased, but Bcl2 expression was increased. The anti-inflammatory (IFN-γ, TNF-α, TGF-β, IL-6) gene expression was reduced, but NF-kB expression was increased. Hypoxia regulator (Hif-1α and Nrf2) and tumour suppressor genes (p53 and p21) were also decreased. Thus, BPA exposure changes EC diversity, induces mortality and alters antioxidant, apoptotic and inflammatory gene expression in ovary.</div></div>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":\"135 \",\"pages\":\"Article 108909\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890623825000802\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623825000802","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Bisphenol-A-induced ovarian cancer: Changes in epithelial diversity, apoptosis, antioxidant and anti-inflammatory mechanisms
This research was designed to study the carcinogenic mechanisms of BPA on ovarian epithelial cells. For four months, mice were treated with low (LD, 1 mg/kg) and high (HD, 5 mg/kg of body weight) doses of BPA on alternate days through oral gavage; the control group was given corn oil through gavaging during 4 months. The histopathological data suggest that repeated BPA administration induces a borderline epithelial neoplasm with altered epithelial morphology with branching papillae. Various epithelial cells (ECs) in ovaries were identified by flow cytometry based on anti-mouse CD74 and podoplanin (PDPL) receptors expression. Three different populations of ovarian epithelial cells were identified: epithelial cells type 1 (PDPL+CD74-,EC1), epithelial cells type 2 (PDPL-CD74+, EC2), and transition epithelial cells (PDPL+CD74+, TEC). The EC1 decreased, but EC2 was increased in BPA-exposed mice. The population of TEC was comparable to that in the control group at the low dose (LD) but decreased in the high dose (HD) BPA-treated groups. A significant increase in PDPL, CD74 receptor expression and apoptosis and necrosis in BPA-treated ovarian cells was seen. The RT-qPCR results suggest that the relative expression levels of pro-apoptotic (Bax and Casp3) and anti-apoptotic Cytc were markedly decreased, but Bcl2 expression was increased. The anti-inflammatory (IFN-γ, TNF-α, TGF-β, IL-6) gene expression was reduced, but NF-kB expression was increased. Hypoxia regulator (Hif-1α and Nrf2) and tumour suppressor genes (p53 and p21) were also decreased. Thus, BPA exposure changes EC diversity, induces mortality and alters antioxidant, apoptotic and inflammatory gene expression in ovary.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.