Marina P. Abuçafy*, Beatriz B. S. Ramin, Angelica E. Graminha, Willy G. Santos, Regina C. G. Frem, Adelino V. G. Netto, José Clayston M. Pereira and Sidney J. L. Ribeiro*,
{"title":"核壳UCNP@MOF双重刺激响应型阿霉素释放纳米平台","authors":"Marina P. Abuçafy*, Beatriz B. S. Ramin, Angelica E. Graminha, Willy G. Santos, Regina C. G. Frem, Adelino V. G. Netto, José Clayston M. Pereira and Sidney J. L. Ribeiro*, ","doi":"10.1021/acsabm.4c0179610.1021/acsabm.4c01796","DOIUrl":null,"url":null,"abstract":"<p >Nanocarrier systems with multifunctional capabilities hold great potential for targeted cancer therapy, particularly for breast cancer treatment. Metal–organic frameworks (MOFs) are notable for their high porosity and, in some cases, biocompatibility, with ZIF-8 being particularly advantageous due to its pH-sensitive degradability, enabling selective drug release in tumor environments. Additionally, lanthanide-doped upconversion nanoparticles (UCNPs) offer unique optical properties that enhance both imaging and therapeutic applications. In this study, NaYF<sub>4</sub>/Yb<sup>3+</sup>Er<sup>3+</sup> UCNPs were synthesized via a hydrothermal method, subsequently coated with poly(acrylic acid) (PAA) and encapsulated within a ZIF-8 shell, forming of UCNP@ZIF-8 core–shell nanocomposites. This system was designed to leverage stimulation by a 980 nm laser and acidic pH to facilitate drug release. When exposed to this specific laser wavelength, the nanocomposites demonstrated significantly enhanced drug release, achieving up to 90% release of the incorporated antitumor drug, doxorubicin (DOX), in acidic environments. In vitro studies indicated selective cytotoxicity, with MCF-7 tumor cell viability decreasing from 85.7% to 20% following laser activation, while showing minimal toxicity toward healthy cells. These findings underscore the potential of the UCNP@ZIF-8 nanocarrier system as a pH and laser-responsive platform for improved cancer therapy, enabling precise control over drug delivery while minimizing side effects on surrounding healthy tissues.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 4","pages":"2954–2964 2954–2964"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsabm.4c01796","citationCount":"0","resultStr":"{\"title\":\"Core–Shell UCNP@MOF Nanoplatforms for Dual Stimuli-Responsive Doxorubicin Release\",\"authors\":\"Marina P. Abuçafy*, Beatriz B. S. Ramin, Angelica E. Graminha, Willy G. Santos, Regina C. G. Frem, Adelino V. G. Netto, José Clayston M. Pereira and Sidney J. L. Ribeiro*, \",\"doi\":\"10.1021/acsabm.4c0179610.1021/acsabm.4c01796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanocarrier systems with multifunctional capabilities hold great potential for targeted cancer therapy, particularly for breast cancer treatment. Metal–organic frameworks (MOFs) are notable for their high porosity and, in some cases, biocompatibility, with ZIF-8 being particularly advantageous due to its pH-sensitive degradability, enabling selective drug release in tumor environments. Additionally, lanthanide-doped upconversion nanoparticles (UCNPs) offer unique optical properties that enhance both imaging and therapeutic applications. In this study, NaYF<sub>4</sub>/Yb<sup>3+</sup>Er<sup>3+</sup> UCNPs were synthesized via a hydrothermal method, subsequently coated with poly(acrylic acid) (PAA) and encapsulated within a ZIF-8 shell, forming of UCNP@ZIF-8 core–shell nanocomposites. This system was designed to leverage stimulation by a 980 nm laser and acidic pH to facilitate drug release. When exposed to this specific laser wavelength, the nanocomposites demonstrated significantly enhanced drug release, achieving up to 90% release of the incorporated antitumor drug, doxorubicin (DOX), in acidic environments. In vitro studies indicated selective cytotoxicity, with MCF-7 tumor cell viability decreasing from 85.7% to 20% following laser activation, while showing minimal toxicity toward healthy cells. These findings underscore the potential of the UCNP@ZIF-8 nanocarrier system as a pH and laser-responsive platform for improved cancer therapy, enabling precise control over drug delivery while minimizing side effects on surrounding healthy tissues.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 4\",\"pages\":\"2954–2964 2954–2964\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsabm.4c01796\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsabm.4c01796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.4c01796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Core–Shell UCNP@MOF Nanoplatforms for Dual Stimuli-Responsive Doxorubicin Release
Nanocarrier systems with multifunctional capabilities hold great potential for targeted cancer therapy, particularly for breast cancer treatment. Metal–organic frameworks (MOFs) are notable for their high porosity and, in some cases, biocompatibility, with ZIF-8 being particularly advantageous due to its pH-sensitive degradability, enabling selective drug release in tumor environments. Additionally, lanthanide-doped upconversion nanoparticles (UCNPs) offer unique optical properties that enhance both imaging and therapeutic applications. In this study, NaYF4/Yb3+Er3+ UCNPs were synthesized via a hydrothermal method, subsequently coated with poly(acrylic acid) (PAA) and encapsulated within a ZIF-8 shell, forming of UCNP@ZIF-8 core–shell nanocomposites. This system was designed to leverage stimulation by a 980 nm laser and acidic pH to facilitate drug release. When exposed to this specific laser wavelength, the nanocomposites demonstrated significantly enhanced drug release, achieving up to 90% release of the incorporated antitumor drug, doxorubicin (DOX), in acidic environments. In vitro studies indicated selective cytotoxicity, with MCF-7 tumor cell viability decreasing from 85.7% to 20% following laser activation, while showing minimal toxicity toward healthy cells. These findings underscore the potential of the UCNP@ZIF-8 nanocarrier system as a pH and laser-responsive platform for improved cancer therapy, enabling precise control over drug delivery while minimizing side effects on surrounding healthy tissues.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.