促进疾病耐受性的宿主-病原体代谢同步

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ying-Tsun Chen, Gaurav Kumar Lohia, Samantha Chen, Zihua Liu, Tania Wong Fok Lung, Chu Wang, Sebastián A. Riquelme
{"title":"促进疾病耐受性的宿主-病原体代谢同步","authors":"Ying-Tsun Chen, Gaurav Kumar Lohia, Samantha Chen, Zihua Liu, Tania Wong Fok Lung, Chu Wang, Sebastián A. Riquelme","doi":"10.1038/s41467-025-59134-1","DOIUrl":null,"url":null,"abstract":"<p>Disease tolerance mitigates organ damage from non-resolving inflammation during persistent infections, yet its underlying mechanisms remain unclear. Here we show, in a <i>Pseudomonas aeruginosa</i> pneumonia mouse model, that disease tolerance depends on the mitochondrial metabolite itaconate, which mediates cooperative host-pathogen interactions. In <i>P. aeruginosa</i>, itaconate modifies key cysteine residues in TCA cycle enzymes critical for succinate metabolism, inducing bioenergetic stress and promoting the formation biofilms that are less immunostimulatory and allow the bacteria to integrate into the local microbiome. Itaconate incorporates into the central metabolism of the biofilm, driving exopolysaccharide production—particularly alginate—which amplifies airway itaconate signaling. This itaconate-alginate interplay limits host immunopathology by enabling pulmonary glutamine assimilation, activating glutaminolysis, and thereby restrain detrimental inflammation caused by the inflammasome. Clinical sample analysis reveals that <i>P. aeruginosa</i> adapts to this metabolic environment through compensatory mutations in the anti-sigma-factor <i>mucA</i>, which restore the succinate-driven bioenergetics and disrupt the metabolic synchrony essential for sustaining disease tolerance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"65 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A host-pathogen metabolic synchrony that facilitates disease tolerance\",\"authors\":\"Ying-Tsun Chen, Gaurav Kumar Lohia, Samantha Chen, Zihua Liu, Tania Wong Fok Lung, Chu Wang, Sebastián A. Riquelme\",\"doi\":\"10.1038/s41467-025-59134-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Disease tolerance mitigates organ damage from non-resolving inflammation during persistent infections, yet its underlying mechanisms remain unclear. Here we show, in a <i>Pseudomonas aeruginosa</i> pneumonia mouse model, that disease tolerance depends on the mitochondrial metabolite itaconate, which mediates cooperative host-pathogen interactions. In <i>P. aeruginosa</i>, itaconate modifies key cysteine residues in TCA cycle enzymes critical for succinate metabolism, inducing bioenergetic stress and promoting the formation biofilms that are less immunostimulatory and allow the bacteria to integrate into the local microbiome. Itaconate incorporates into the central metabolism of the biofilm, driving exopolysaccharide production—particularly alginate—which amplifies airway itaconate signaling. This itaconate-alginate interplay limits host immunopathology by enabling pulmonary glutamine assimilation, activating glutaminolysis, and thereby restrain detrimental inflammation caused by the inflammasome. Clinical sample analysis reveals that <i>P. aeruginosa</i> adapts to this metabolic environment through compensatory mutations in the anti-sigma-factor <i>mucA</i>, which restore the succinate-driven bioenergetics and disrupt the metabolic synchrony essential for sustaining disease tolerance.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59134-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59134-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

疾病耐受可减轻持续感染期间炎症不消退造成的器官损伤,但其潜在机制仍不清楚。我们在铜绿假单胞菌肺炎小鼠模型中发现,疾病耐受性取决于线粒体代谢物伊塔康酸,它介导了宿主与病原体之间的合作性相互作用。在铜绿假单胞菌体内,伊塔康酸会改变对琥珀酸代谢至关重要的 TCA 循环酶中的关键半胱氨酸残基,从而诱发生物能应激,促进形成生物膜,这种生物膜的免疫刺激作用较弱,能使细菌融入当地微生物群。伊塔康酸融入生物膜的中心代谢,推动外多糖的产生,特别是海藻酸,从而扩大气道伊塔康酸信号。伊塔康酸-海藻酸之间的相互作用通过促进肺谷氨酰胺同化、激活谷氨酰胺溶解,从而抑制炎症小体引起的有害炎症,从而限制宿主的免疫病理学。临床样本分析表明,铜绿假单胞菌通过抗σ因子 mucA 的补偿性突变来适应这种代谢环境,这种突变恢复了琥珀酸驱动的生物能,破坏了维持疾病耐受性所必需的代谢同步性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A host-pathogen metabolic synchrony that facilitates disease tolerance

A host-pathogen metabolic synchrony that facilitates disease tolerance

Disease tolerance mitigates organ damage from non-resolving inflammation during persistent infections, yet its underlying mechanisms remain unclear. Here we show, in a Pseudomonas aeruginosa pneumonia mouse model, that disease tolerance depends on the mitochondrial metabolite itaconate, which mediates cooperative host-pathogen interactions. In P. aeruginosa, itaconate modifies key cysteine residues in TCA cycle enzymes critical for succinate metabolism, inducing bioenergetic stress and promoting the formation biofilms that are less immunostimulatory and allow the bacteria to integrate into the local microbiome. Itaconate incorporates into the central metabolism of the biofilm, driving exopolysaccharide production—particularly alginate—which amplifies airway itaconate signaling. This itaconate-alginate interplay limits host immunopathology by enabling pulmonary glutamine assimilation, activating glutaminolysis, and thereby restrain detrimental inflammation caused by the inflammasome. Clinical sample analysis reveals that P. aeruginosa adapts to this metabolic environment through compensatory mutations in the anti-sigma-factor mucA, which restore the succinate-driven bioenergetics and disrupt the metabolic synchrony essential for sustaining disease tolerance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信