模糊按钮退化对AM和PRBS信号传输的影响

IF 1.1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Wenjia Wang, Jinchun Gao, Paolo Manfredi, Igor S. Stievano
{"title":"模糊按钮退化对AM和PRBS信号传输的影响","authors":"Wenjia Wang,&nbsp;Jinchun Gao,&nbsp;Paolo Manfredi,&nbsp;Igor S. Stievano","doi":"10.1049/mia2.70022","DOIUrl":null,"url":null,"abstract":"<p>As elastic electrical connectors, fuzz buttons provide a vertical and solderless electrical interconnection in microwave modules to enhance the integration. However, prolonged use in harsh environments poses a risk of potential failure in electronic components, potentially compromising communication system reliability. This work studies the impact of fuzz button degradation in harsh environments on analog modulation (AM) and pseudo random binary sequence (PRBS) signal transmission using theoretical analysis and experimental testing. Accelerated tests are designed to obtain the fuzz button samples with different degradation levels. The surface morphology observation and elemental analysis are conducted to analyse the degradation mechanism. In addition, a transmission channel with fuzz button interconnections is designed and the corresponding equivalent circuit model is developed. Based on the proposed circuit model, the effects of fuzz button degradation on the integrity of both AM signal and PRBS signal are investigated by analysing the metrics such as waveform, eye diagram and bit error rate (BER) of the output signal. In addition, the effects of the carrier frequency of AM signals, and the transmission rate of the PRBS signals on signal transmission are also investigated. The simulation results of the circuit model show good agreements with experimental tests. The research results provide a better understanding regarding the potentially corrosive effects of harsh environments on fuzz button connectors and the negative effects on the signal integrity. Moreover, the research results provide comprehensive data support for identifying key features that are used for the development of machine learning models for fault diagnosis and localisation in radio frequency (RF) circuits with fuzz button interconnections.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.70022","citationCount":"0","resultStr":"{\"title\":\"Impact of Fuzz Button Degradation on AM and PRBS Signal Transmission\",\"authors\":\"Wenjia Wang,&nbsp;Jinchun Gao,&nbsp;Paolo Manfredi,&nbsp;Igor S. Stievano\",\"doi\":\"10.1049/mia2.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As elastic electrical connectors, fuzz buttons provide a vertical and solderless electrical interconnection in microwave modules to enhance the integration. However, prolonged use in harsh environments poses a risk of potential failure in electronic components, potentially compromising communication system reliability. This work studies the impact of fuzz button degradation in harsh environments on analog modulation (AM) and pseudo random binary sequence (PRBS) signal transmission using theoretical analysis and experimental testing. Accelerated tests are designed to obtain the fuzz button samples with different degradation levels. The surface morphology observation and elemental analysis are conducted to analyse the degradation mechanism. In addition, a transmission channel with fuzz button interconnections is designed and the corresponding equivalent circuit model is developed. Based on the proposed circuit model, the effects of fuzz button degradation on the integrity of both AM signal and PRBS signal are investigated by analysing the metrics such as waveform, eye diagram and bit error rate (BER) of the output signal. In addition, the effects of the carrier frequency of AM signals, and the transmission rate of the PRBS signals on signal transmission are also investigated. The simulation results of the circuit model show good agreements with experimental tests. The research results provide a better understanding regarding the potentially corrosive effects of harsh environments on fuzz button connectors and the negative effects on the signal integrity. Moreover, the research results provide comprehensive data support for identifying key features that are used for the development of machine learning models for fault diagnosis and localisation in radio frequency (RF) circuits with fuzz button interconnections.</p>\",\"PeriodicalId\":13374,\"journal\":{\"name\":\"Iet Microwaves Antennas & Propagation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.70022\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Microwaves Antennas & Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mia2.70022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.70022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

作为弹性电气连接器,模糊按钮可在微波模块中提供垂直无焊接电气互连,从而提高集成度。然而,在恶劣环境中长期使用会给电子元件带来潜在故障风险,从而可能影响通信系统的可靠性。这项研究通过理论分析和实验测试,研究了在恶劣环境中模糊按钮退化对模拟调制(AM)和伪随机二进制序列(PRBS)信号传输的影响。我们设计了加速测试,以获得不同降解程度的模糊按钮样品。通过表面形态观察和元素分析来分析降解机制。此外,还设计了与模糊按钮互连的传输通道,并建立了相应的等效电路模型。根据所提出的电路模型,通过分析输出信号的波形、眼图和误码率等指标,研究了模糊按钮退化对调幅信号和 PRBS 信号完整性的影响。此外,还研究了调幅信号的载波频率和 PRBS 信号的传输速率对信号传输的影响。电路模型的仿真结果与实验测试结果吻合良好。研究结果使人们更好地了解了恶劣环境对模糊按钮连接器的潜在腐蚀作用以及对信号完整性的负面影响。此外,研究成果还为确定关键特征提供了全面的数据支持,这些关键特征用于开发机器学习模型,以诊断和定位带有模糊按钮互连的射频(RF)电路中的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of Fuzz Button Degradation on AM and PRBS Signal Transmission

Impact of Fuzz Button Degradation on AM and PRBS Signal Transmission

As elastic electrical connectors, fuzz buttons provide a vertical and solderless electrical interconnection in microwave modules to enhance the integration. However, prolonged use in harsh environments poses a risk of potential failure in electronic components, potentially compromising communication system reliability. This work studies the impact of fuzz button degradation in harsh environments on analog modulation (AM) and pseudo random binary sequence (PRBS) signal transmission using theoretical analysis and experimental testing. Accelerated tests are designed to obtain the fuzz button samples with different degradation levels. The surface morphology observation and elemental analysis are conducted to analyse the degradation mechanism. In addition, a transmission channel with fuzz button interconnections is designed and the corresponding equivalent circuit model is developed. Based on the proposed circuit model, the effects of fuzz button degradation on the integrity of both AM signal and PRBS signal are investigated by analysing the metrics such as waveform, eye diagram and bit error rate (BER) of the output signal. In addition, the effects of the carrier frequency of AM signals, and the transmission rate of the PRBS signals on signal transmission are also investigated. The simulation results of the circuit model show good agreements with experimental tests. The research results provide a better understanding regarding the potentially corrosive effects of harsh environments on fuzz button connectors and the negative effects on the signal integrity. Moreover, the research results provide comprehensive data support for identifying key features that are used for the development of machine learning models for fault diagnosis and localisation in radio frequency (RF) circuits with fuzz button interconnections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Microwaves Antennas & Propagation
Iet Microwaves Antennas & Propagation 工程技术-电信学
CiteScore
4.30
自引率
5.90%
发文量
109
审稿时长
7 months
期刊介绍: Topics include, but are not limited to: Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques. Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas. Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms. Radiowave propagation at all frequencies and environments. Current Special Issue. Call for papers: Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信