多模光纤上的秘密密钥生成:信道测量,密钥速率分析和系统实现

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pin-Hsun Lin;Paul Nowitzki;Eduard A. Jorswieck;Dennis Pohle;Juergen Czarske
{"title":"多模光纤上的秘密密钥生成:信道测量,密钥速率分析和系统实现","authors":"Pin-Hsun Lin;Paul Nowitzki;Eduard A. Jorswieck;Dennis Pohle;Juergen Czarske","doi":"10.1109/OJCOMS.2025.3549090","DOIUrl":null,"url":null,"abstract":"Secret keys are critical for many security mechanisms including secure data transmission. An efficient secret key generation and sharing scheme enhances the secure transmission rate. Meanwhile, secret keys are scarce resources for classical encryption schemes like the Rivest-Shamir-Adleman (RSA) cryptosystem and its post-quantum security counterparts in quantum applications. Therefore, harnessing every available random source for secret key extraction is crucial for maximizing the key rate across a range of potential applications. In this paper, we investigate the achievable rate of the secret key generation (SKG)-channel-model based on an actual measured multi-mode fiber (MMF) channel, where there is an additional public discussion channel between the legitimate parties, which the adversary can perfectly overhear. In particular, we first measure the MMF transmission matrix using digital holography, then design power allocation schemes among the modes. Our schemes can achieve a positive secret key rate at 51.3 bit per channel use, under a mode-dependent loss of 1 dB and a transmit power of 20 dBm. In addition, we implement an SKG system via MMF by explicitly designing the wiretap codes and discussion protocol. More specifically, we design the hash function and point-to-point channel encoder/decoder for each mode in the MMF based on Hayashi’s wiretap coding. The designed system can achieve a secret key rate-leakage trade-off at <inline-formula> <tex-math>$R_{SK} = 23.6$ </tex-math></inline-formula> bits per channel use and an average leakage rate at <inline-formula> <tex-math>$ 4.22 \\cdot 10^{-3}$ </tex-math></inline-formula> bits per channel use per mode, at the transmit power <inline-formula> <tex-math>$\\textsf {P}_{T}$ </tex-math></inline-formula> at 50 dBm and mode-dependent loss at 1 dB with the error probability constraint at Bob as <inline-formula> <tex-math>$10^{-5}$ </tex-math></inline-formula>. This demonstrates the feasibility and effectiveness of generating SKG via MMF, aligning with the common approaches of post-quantum cryptography and quantum key distribution in addressing the challenges posed by emerging quantum computers.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"1-1"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916747","citationCount":"0","resultStr":"{\"title\":\"Secret Key Generation Over Multi-Mode Fiber: Channel Measurements, Key Rate Analysis, and System Implementation\",\"authors\":\"Pin-Hsun Lin;Paul Nowitzki;Eduard A. Jorswieck;Dennis Pohle;Juergen Czarske\",\"doi\":\"10.1109/OJCOMS.2025.3549090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secret keys are critical for many security mechanisms including secure data transmission. An efficient secret key generation and sharing scheme enhances the secure transmission rate. Meanwhile, secret keys are scarce resources for classical encryption schemes like the Rivest-Shamir-Adleman (RSA) cryptosystem and its post-quantum security counterparts in quantum applications. Therefore, harnessing every available random source for secret key extraction is crucial for maximizing the key rate across a range of potential applications. In this paper, we investigate the achievable rate of the secret key generation (SKG)-channel-model based on an actual measured multi-mode fiber (MMF) channel, where there is an additional public discussion channel between the legitimate parties, which the adversary can perfectly overhear. In particular, we first measure the MMF transmission matrix using digital holography, then design power allocation schemes among the modes. Our schemes can achieve a positive secret key rate at 51.3 bit per channel use, under a mode-dependent loss of 1 dB and a transmit power of 20 dBm. In addition, we implement an SKG system via MMF by explicitly designing the wiretap codes and discussion protocol. More specifically, we design the hash function and point-to-point channel encoder/decoder for each mode in the MMF based on Hayashi’s wiretap coding. The designed system can achieve a secret key rate-leakage trade-off at <inline-formula> <tex-math>$R_{SK} = 23.6$ </tex-math></inline-formula> bits per channel use and an average leakage rate at <inline-formula> <tex-math>$ 4.22 \\\\cdot 10^{-3}$ </tex-math></inline-formula> bits per channel use per mode, at the transmit power <inline-formula> <tex-math>$\\\\textsf {P}_{T}$ </tex-math></inline-formula> at 50 dBm and mode-dependent loss at 1 dB with the error probability constraint at Bob as <inline-formula> <tex-math>$10^{-5}$ </tex-math></inline-formula>. This demonstrates the feasibility and effectiveness of generating SKG via MMF, aligning with the common approaches of post-quantum cryptography and quantum key distribution in addressing the challenges posed by emerging quantum computers.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"1-1\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916747\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10916747/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10916747/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

密钥对于包括安全数据传输在内的许多安全机制都是至关重要的。有效的密钥生成和共享方案提高了安全传输速率。与此同时,密钥是经典加密方案的稀缺资源,如Rivest-Shamir-Adleman (RSA)密码系统和量子应用中的后量子安全方案。因此,利用每个可用的随机源进行密钥提取对于在一系列潜在应用程序中最大化密钥速率至关重要。在本文中,我们研究了基于实际测量的多模光纤(MMF)信道的密钥生成(SKG)信道模型的可实现速率,其中合法双方之间存在额外的公共讨论信道,对手可以完全无意中听到。特别是,我们首先使用数字全息测量MMF传输矩阵,然后设计各模式之间的功率分配方案。我们的方案可以在模式相关损耗为1db和发射功率为20dbm的情况下,在每个信道使用51.3比特的情况下实现正密钥速率。此外,通过明确设计窃听代码和讨论协议,通过MMF实现了SKG系统。更具体地说,我们基于Hayashi的窃听编码为MMF中的每种模式设计了哈希函数和点对点信道编码器/解码器。所设计的系统可以在每通道使用$R_{SK} = 23.6$ bits时实现密钥泄漏权衡,在每模式下每通道使用$ 4.22 $ cdot 10^{-3}$ bits,在发射功率$\textsf {P}_{T}$为50 dBm时,模式相关损耗为1 dB, Bob处的错误概率约束为$10^{-5}$。这证明了通过MMF生成SKG的可行性和有效性,与后量子密码学和量子密钥分发的常用方法一致,以应对新兴量子计算机带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secret Key Generation Over Multi-Mode Fiber: Channel Measurements, Key Rate Analysis, and System Implementation
Secret keys are critical for many security mechanisms including secure data transmission. An efficient secret key generation and sharing scheme enhances the secure transmission rate. Meanwhile, secret keys are scarce resources for classical encryption schemes like the Rivest-Shamir-Adleman (RSA) cryptosystem and its post-quantum security counterparts in quantum applications. Therefore, harnessing every available random source for secret key extraction is crucial for maximizing the key rate across a range of potential applications. In this paper, we investigate the achievable rate of the secret key generation (SKG)-channel-model based on an actual measured multi-mode fiber (MMF) channel, where there is an additional public discussion channel between the legitimate parties, which the adversary can perfectly overhear. In particular, we first measure the MMF transmission matrix using digital holography, then design power allocation schemes among the modes. Our schemes can achieve a positive secret key rate at 51.3 bit per channel use, under a mode-dependent loss of 1 dB and a transmit power of 20 dBm. In addition, we implement an SKG system via MMF by explicitly designing the wiretap codes and discussion protocol. More specifically, we design the hash function and point-to-point channel encoder/decoder for each mode in the MMF based on Hayashi’s wiretap coding. The designed system can achieve a secret key rate-leakage trade-off at $R_{SK} = 23.6$ bits per channel use and an average leakage rate at $ 4.22 \cdot 10^{-3}$ bits per channel use per mode, at the transmit power $\textsf {P}_{T}$ at 50 dBm and mode-dependent loss at 1 dB with the error probability constraint at Bob as $10^{-5}$ . This demonstrates the feasibility and effectiveness of generating SKG via MMF, aligning with the common approaches of post-quantum cryptography and quantum key distribution in addressing the challenges posed by emerging quantum computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信