基于表征学习的两阶段随机整数方案求解

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yaoxin Wu , Zhiguang Cao , Wen Song , Yingqian Zhang
{"title":"基于表征学习的两阶段随机整数方案求解","authors":"Yaoxin Wu ,&nbsp;Zhiguang Cao ,&nbsp;Wen Song ,&nbsp;Yingqian Zhang","doi":"10.1016/j.neunet.2025.107446","DOIUrl":null,"url":null,"abstract":"<div><div>Solving stochastic integer programs (SIPs) is extremely intractable due to the high computational complexity. To solve two-stage SIPs efficiently, we propose a conditional variational autoencoder (CVAE) for scenario representation learning. A graph convolutional network (GCN) based VAE embeds scenarios into a low-dimensional latent space, conditioned on the deterministic context of each instance. With the latent representations of stochastic scenarios, we perform two auxiliary tasks: <em>objective prediction</em> and <em>scenario contrast</em>, which predict scenario objective values and the similarities between them, respectively. These tasks further integrate objective information into the representations through gradient backpropagation. Experiments show that the learned scenario representations can help reduce scenarios in SIPs, facilitating high-quality solutions in a short computational time. This superiority generalizes well to instances of larger sizes, more scenarios, and various distributions.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107446"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving two-stage stochastic integer programs via representation learning\",\"authors\":\"Yaoxin Wu ,&nbsp;Zhiguang Cao ,&nbsp;Wen Song ,&nbsp;Yingqian Zhang\",\"doi\":\"10.1016/j.neunet.2025.107446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solving stochastic integer programs (SIPs) is extremely intractable due to the high computational complexity. To solve two-stage SIPs efficiently, we propose a conditional variational autoencoder (CVAE) for scenario representation learning. A graph convolutional network (GCN) based VAE embeds scenarios into a low-dimensional latent space, conditioned on the deterministic context of each instance. With the latent representations of stochastic scenarios, we perform two auxiliary tasks: <em>objective prediction</em> and <em>scenario contrast</em>, which predict scenario objective values and the similarities between them, respectively. These tasks further integrate objective information into the representations through gradient backpropagation. Experiments show that the learned scenario representations can help reduce scenarios in SIPs, facilitating high-quality solutions in a short computational time. This superiority generalizes well to instances of larger sizes, more scenarios, and various distributions.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"188 \",\"pages\":\"Article 107446\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025003259\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003259","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随机整数规划的求解由于其较高的计算复杂度,是一个非常棘手的问题。为了有效地解决两阶段sip,我们提出了一种用于场景表示学习的条件变分自编码器(CVAE)。基于图卷积网络(GCN)的VAE将场景嵌入到低维潜在空间中,以每个实例的确定性上下文为条件。利用随机情景的潜在表征,我们执行了两个辅助任务:客观预测和情景对比,分别预测情景的目标值和它们之间的相似性。这些任务通过梯度反向传播进一步将客观信息整合到表征中。实验表明,学习到的场景表示有助于减少sip中的场景,在较短的计算时间内提供高质量的解决方案。这种优势可以很好地推广到更大规模、更多场景和各种分布的实例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving two-stage stochastic integer programs via representation learning
Solving stochastic integer programs (SIPs) is extremely intractable due to the high computational complexity. To solve two-stage SIPs efficiently, we propose a conditional variational autoencoder (CVAE) for scenario representation learning. A graph convolutional network (GCN) based VAE embeds scenarios into a low-dimensional latent space, conditioned on the deterministic context of each instance. With the latent representations of stochastic scenarios, we perform two auxiliary tasks: objective prediction and scenario contrast, which predict scenario objective values and the similarities between them, respectively. These tasks further integrate objective information into the representations through gradient backpropagation. Experiments show that the learned scenario representations can help reduce scenarios in SIPs, facilitating high-quality solutions in a short computational time. This superiority generalizes well to instances of larger sizes, more scenarios, and various distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信