{"title":"基于电塑性效应的镍基高温合金压缩变形机理及本构描述","authors":"ZhaoPeng Hao, YueShuai Duan, YiHang Fan","doi":"10.1016/j.materresbull.2025.113498","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the electroplasticity effect, the split Hopkinson pressure bar (SHPB) experiments were conducted on nickel-based superalloy GH4169 under electrically assisted conditions. The dislocation morphology induced by pulse current during material deformation was studied, and the dynamic mechanism of dislocations under the electroplasticity effect was analyzed. According to the experimental results, it was found that the addition of pulse current reduces the dislocations pile-up in the material, promotes dynamic recrystallization, and thus improves the plasticity of the material. To further investigate the effect of electric field on nickel-based superalloy GH4169, the first principles calculation method was used to analyze the influence law of electric field on the phase structure of Ni- γ Phase, AlNi<sub>3</sub>- γʹ, NbNi<sub>3</sub>- γ″. The simulation results show that the application of an electric field reduces the shear modulus and Young's modulus of the material, making it prone to deformation, which is consistent with the results of the pulse current assisted compression experiment. Finally, based on the dislocation thermal activation theory and the Johnson-Cook constitutive model, the energy obtained by dislocations from free electrons and magnetic fields was analyzed. The constitutive equation under pulsed current is established, and the high accuracy of the established constitutive model is verified through experiments.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113498"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compression deformation mechanism and constitutive description of nickel-based superalloy based on electroplasticity effect\",\"authors\":\"ZhaoPeng Hao, YueShuai Duan, YiHang Fan\",\"doi\":\"10.1016/j.materresbull.2025.113498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the electroplasticity effect, the split Hopkinson pressure bar (SHPB) experiments were conducted on nickel-based superalloy GH4169 under electrically assisted conditions. The dislocation morphology induced by pulse current during material deformation was studied, and the dynamic mechanism of dislocations under the electroplasticity effect was analyzed. According to the experimental results, it was found that the addition of pulse current reduces the dislocations pile-up in the material, promotes dynamic recrystallization, and thus improves the plasticity of the material. To further investigate the effect of electric field on nickel-based superalloy GH4169, the first principles calculation method was used to analyze the influence law of electric field on the phase structure of Ni- γ Phase, AlNi<sub>3</sub>- γʹ, NbNi<sub>3</sub>- γ″. The simulation results show that the application of an electric field reduces the shear modulus and Young's modulus of the material, making it prone to deformation, which is consistent with the results of the pulse current assisted compression experiment. Finally, based on the dislocation thermal activation theory and the Johnson-Cook constitutive model, the energy obtained by dislocations from free electrons and magnetic fields was analyzed. The constitutive equation under pulsed current is established, and the high accuracy of the established constitutive model is verified through experiments.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"190 \",\"pages\":\"Article 113498\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825002065\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002065","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Compression deformation mechanism and constitutive description of nickel-based superalloy based on electroplasticity effect
Based on the electroplasticity effect, the split Hopkinson pressure bar (SHPB) experiments were conducted on nickel-based superalloy GH4169 under electrically assisted conditions. The dislocation morphology induced by pulse current during material deformation was studied, and the dynamic mechanism of dislocations under the electroplasticity effect was analyzed. According to the experimental results, it was found that the addition of pulse current reduces the dislocations pile-up in the material, promotes dynamic recrystallization, and thus improves the plasticity of the material. To further investigate the effect of electric field on nickel-based superalloy GH4169, the first principles calculation method was used to analyze the influence law of electric field on the phase structure of Ni- γ Phase, AlNi3- γʹ, NbNi3- γ″. The simulation results show that the application of an electric field reduces the shear modulus and Young's modulus of the material, making it prone to deformation, which is consistent with the results of the pulse current assisted compression experiment. Finally, based on the dislocation thermal activation theory and the Johnson-Cook constitutive model, the energy obtained by dislocations from free electrons and magnetic fields was analyzed. The constitutive equation under pulsed current is established, and the high accuracy of the established constitutive model is verified through experiments.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.