Tao Huang , Xianwei Dai , Qingyou Liu , Haiyan Zhu
{"title":"射流冲击下高温非均质岩石的热耦合FSI分析","authors":"Tao Huang , Xianwei Dai , Qingyou Liu , Haiyan Zhu","doi":"10.1016/j.geothermics.2025.103348","DOIUrl":null,"url":null,"abstract":"<div><div>Jet impingement is an efficient rock breaking method in the development of geological resources. In high-temperature formations, thermal stress induced by the temperature difference interacts with fluid pressure and impact forces, thus further enhancing the efficiency of rock failure. Meanwhile, the inherent heterogeneity of rocks influences stress distribution and failure characteristics of rocks as well. To elucidate this intricate process, a multi-physics coupling model is developed in the present study, in which the finite-discrete-element method (FDEM) and Weibull distribution are employed to describe the mechanical response and heterogeneity of rocks. The evolution of temperature, stress, and crack propagation are computed to reveal rock failure mechanisms under different formation conditions and jet parameters. The findings indicate that increasing jet pressure markedly increases jet velocity, improves heat transfer efficiency, and changes the transition from heat conduction to convective heat transfer. Thereby, greater thermal stress is induced, which is accompanied by the application of increased jet pressure on the rock surface. The combined effects of these two factors result in an initial decrease followed by a subsequent increase in crack length. Although rock temperature has fewer effects on jet velocity, the heat transfer efficiency also increases at elevated temperatures resulting from the variation of temperature differences. Correspondingly, thermal stress and crack length rise continually. Moreover, heightened heterogeneity exacerbates rock damage. In this research, thermal stress exerts pronounced effects on crack length once rock temperature exceeds 200 °C on the whole. However, the heightened rock heterogeneity can lower the critical temperature threshold for the propagation of cracks. The results of this investigation provide an in-depth insight into the rock failure mechanism influenced by multi-physics coupling.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"130 ","pages":"Article 103348"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-coupled FSI analysis of high-temperature heterogeneity rocks subjected to jet impingement\",\"authors\":\"Tao Huang , Xianwei Dai , Qingyou Liu , Haiyan Zhu\",\"doi\":\"10.1016/j.geothermics.2025.103348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Jet impingement is an efficient rock breaking method in the development of geological resources. In high-temperature formations, thermal stress induced by the temperature difference interacts with fluid pressure and impact forces, thus further enhancing the efficiency of rock failure. Meanwhile, the inherent heterogeneity of rocks influences stress distribution and failure characteristics of rocks as well. To elucidate this intricate process, a multi-physics coupling model is developed in the present study, in which the finite-discrete-element method (FDEM) and Weibull distribution are employed to describe the mechanical response and heterogeneity of rocks. The evolution of temperature, stress, and crack propagation are computed to reveal rock failure mechanisms under different formation conditions and jet parameters. The findings indicate that increasing jet pressure markedly increases jet velocity, improves heat transfer efficiency, and changes the transition from heat conduction to convective heat transfer. Thereby, greater thermal stress is induced, which is accompanied by the application of increased jet pressure on the rock surface. The combined effects of these two factors result in an initial decrease followed by a subsequent increase in crack length. Although rock temperature has fewer effects on jet velocity, the heat transfer efficiency also increases at elevated temperatures resulting from the variation of temperature differences. Correspondingly, thermal stress and crack length rise continually. Moreover, heightened heterogeneity exacerbates rock damage. In this research, thermal stress exerts pronounced effects on crack length once rock temperature exceeds 200 °C on the whole. However, the heightened rock heterogeneity can lower the critical temperature threshold for the propagation of cracks. The results of this investigation provide an in-depth insight into the rock failure mechanism influenced by multi-physics coupling.</div></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"130 \",\"pages\":\"Article 103348\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650525001002\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650525001002","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermo-coupled FSI analysis of high-temperature heterogeneity rocks subjected to jet impingement
Jet impingement is an efficient rock breaking method in the development of geological resources. In high-temperature formations, thermal stress induced by the temperature difference interacts with fluid pressure and impact forces, thus further enhancing the efficiency of rock failure. Meanwhile, the inherent heterogeneity of rocks influences stress distribution and failure characteristics of rocks as well. To elucidate this intricate process, a multi-physics coupling model is developed in the present study, in which the finite-discrete-element method (FDEM) and Weibull distribution are employed to describe the mechanical response and heterogeneity of rocks. The evolution of temperature, stress, and crack propagation are computed to reveal rock failure mechanisms under different formation conditions and jet parameters. The findings indicate that increasing jet pressure markedly increases jet velocity, improves heat transfer efficiency, and changes the transition from heat conduction to convective heat transfer. Thereby, greater thermal stress is induced, which is accompanied by the application of increased jet pressure on the rock surface. The combined effects of these two factors result in an initial decrease followed by a subsequent increase in crack length. Although rock temperature has fewer effects on jet velocity, the heat transfer efficiency also increases at elevated temperatures resulting from the variation of temperature differences. Correspondingly, thermal stress and crack length rise continually. Moreover, heightened heterogeneity exacerbates rock damage. In this research, thermal stress exerts pronounced effects on crack length once rock temperature exceeds 200 °C on the whole. However, the heightened rock heterogeneity can lower the critical temperature threshold for the propagation of cracks. The results of this investigation provide an in-depth insight into the rock failure mechanism influenced by multi-physics coupling.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.