Jin Han , Fei Wang , Jinshe Chen , Yansong Zhang , Shengjing Dongye , Haiyan Chen , Yang Zhang , Yuzhen Zhu
{"title":"碱式碳酸盐抑制聚乙烯粉尘爆燃的火焰传播特性及机理研究","authors":"Jin Han , Fei Wang , Jinshe Chen , Yansong Zhang , Shengjing Dongye , Haiyan Chen , Yang Zhang , Yuzhen Zhu","doi":"10.1016/j.apt.2025.104884","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the potential of basic copper carbonate (BCC) and basic zinc carbonate (BZC) as explosion suppressants for polyethylene (PE) dust deflagration, aiming to improve accident prevention and control. Specifically, this study examines the inhibitory effects and mechanisms of these substances on the flame propagation of PE dust. The effects of the two suppressants on the speed, time, and acceleration of PE flame propagation were compared through Hartmann tube experiments. The findings demonstrate that increasing the quantity of suppressant markedly reduces the rate of flame propagation. This effect is particularly evident when 60 wt% of BZC is introduced, resulting in near-complete suppression. BZC shows a stronger suppression effect compared to BCC, primarily attributable to its lower decomposition temperature, which facilitates earlier release of inert gases during the deflagration process, thereby inhibiting flame spread. Further analysis of the explosion products using FTIR and SEM revealed that the suppressants achieve flame inhibition through a dual mechanism of physical cooling and chemical free radical scavenging. Additionally, numerical simulations using CHEMKIN PRO demonstrated that the inert gases produced by the decomposition of BZC can effectively capture H and OH free radicals generated during combustion, reduce flame temperature, and inhibit chain reactions.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 6","pages":"Article 104884"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the flame propagation characteristics and mechanism of polyethylene dust deflagration suppressed by basic carbonates\",\"authors\":\"Jin Han , Fei Wang , Jinshe Chen , Yansong Zhang , Shengjing Dongye , Haiyan Chen , Yang Zhang , Yuzhen Zhu\",\"doi\":\"10.1016/j.apt.2025.104884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the potential of basic copper carbonate (BCC) and basic zinc carbonate (BZC) as explosion suppressants for polyethylene (PE) dust deflagration, aiming to improve accident prevention and control. Specifically, this study examines the inhibitory effects and mechanisms of these substances on the flame propagation of PE dust. The effects of the two suppressants on the speed, time, and acceleration of PE flame propagation were compared through Hartmann tube experiments. The findings demonstrate that increasing the quantity of suppressant markedly reduces the rate of flame propagation. This effect is particularly evident when 60 wt% of BZC is introduced, resulting in near-complete suppression. BZC shows a stronger suppression effect compared to BCC, primarily attributable to its lower decomposition temperature, which facilitates earlier release of inert gases during the deflagration process, thereby inhibiting flame spread. Further analysis of the explosion products using FTIR and SEM revealed that the suppressants achieve flame inhibition through a dual mechanism of physical cooling and chemical free radical scavenging. Additionally, numerical simulations using CHEMKIN PRO demonstrated that the inert gases produced by the decomposition of BZC can effectively capture H and OH free radicals generated during combustion, reduce flame temperature, and inhibit chain reactions.</div></div>\",\"PeriodicalId\":7232,\"journal\":{\"name\":\"Advanced Powder Technology\",\"volume\":\"36 6\",\"pages\":\"Article 104884\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921883125001050\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125001050","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study on the flame propagation characteristics and mechanism of polyethylene dust deflagration suppressed by basic carbonates
This paper investigates the potential of basic copper carbonate (BCC) and basic zinc carbonate (BZC) as explosion suppressants for polyethylene (PE) dust deflagration, aiming to improve accident prevention and control. Specifically, this study examines the inhibitory effects and mechanisms of these substances on the flame propagation of PE dust. The effects of the two suppressants on the speed, time, and acceleration of PE flame propagation were compared through Hartmann tube experiments. The findings demonstrate that increasing the quantity of suppressant markedly reduces the rate of flame propagation. This effect is particularly evident when 60 wt% of BZC is introduced, resulting in near-complete suppression. BZC shows a stronger suppression effect compared to BCC, primarily attributable to its lower decomposition temperature, which facilitates earlier release of inert gases during the deflagration process, thereby inhibiting flame spread. Further analysis of the explosion products using FTIR and SEM revealed that the suppressants achieve flame inhibition through a dual mechanism of physical cooling and chemical free radical scavenging. Additionally, numerical simulations using CHEMKIN PRO demonstrated that the inert gases produced by the decomposition of BZC can effectively capture H and OH free radicals generated during combustion, reduce flame temperature, and inhibit chain reactions.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)