磁场作用下多孔波纹壳内非定常混合对流的研究

IF 6.4 2区 工程技术 Q1 MECHANICS
Pankaj Choudhary , Rajan Kumar
{"title":"磁场作用下多孔波纹壳内非定常混合对流的研究","authors":"Pankaj Choudhary ,&nbsp;Rajan Kumar","doi":"10.1016/j.icheatmasstransfer.2025.108923","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we performed a numerical analysis of unsteady two-dimensional coupled natural and mixed convective flows in a porous corrugated geometry under the influence of magnetic field. A higher order compact (HOC) scheme is employed to discretize the nonlinear coupled transport equations. The outcomes of simulations are analyzed across a range of critical parameters, including the Darcy Number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>), Reynolds Number (<span><math><mrow><mn>100</mn></mrow></math></span> to <span><math><mrow><mn>1000</mn></mrow></math></span>), Grashof Number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>), Richardson number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> to <span><math><mrow><mn>100</mn></mrow></math></span>), Hartmann number (<span><math><mrow><mn>25</mn></mrow></math></span> to <span><math><mrow><mn>150</mn></mrow></math></span>), and Prandtl Number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>015</mn></mrow></math></span> to <span><math><mrow><mn>10</mn><mo>.</mo><mn>0</mn></mrow></math></span>). Also, analyzing three distinct configurations based on the height of heat sources can provide valuable insights into their thermal performance and Nusselt number variations. The maximum augmentation of the mean Nusselt values on the thermal and non-thermal boundary surfaces in ascending and descending patterns at different critical parameters are viz. <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>87</mn><mo>.</mo><mn>65</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>81</mn><mo>.</mo><mn>12</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>217</mn><mo>.</mo><mn>16</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>62</mn><mo>.</mo><mn>23</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>510</mn><mo>.</mo><mn>30</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>45</mn><mo>.</mo><mn>51</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (<span><math><mrow><mn>42</mn><mo>.</mo><mn>41</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>36</mn><mo>.</mo><mn>13</mn><mtext>%</mtext></mrow></math></span>), and <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>474</mn><mo>.</mo><mn>38</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>32</mn><mo>.</mo><mn>74</mn><mtext>%</mtext></mrow></math></span>), for case 1, <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>19</mn><mo>.</mo><mn>61</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>598</mn><mo>.</mo><mn>34</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>18</mn><mo>.</mo><mn>10</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>66</mn><mo>.</mo><mn>56</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>79</mn><mo>.</mo><mn>62</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>49</mn><mo>.</mo><mn>97</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (<span><math><mrow><mn>41</mn><mo>.</mo><mn>53</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>0</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span>), and <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>442</mn><mo>.</mo><mn>10</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>29</mn><mo>.</mo><mn>70</mn><mtext>%</mtext></mrow></math></span>), for case 2, <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>323</mn><mo>.</mo><mn>78</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>0</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>08</mn><mo>.</mo><mn>54</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>53</mn><mo>.</mo><mn>27</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>97</mn><mo>.</mo><mn>22</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>37</mn><mo>.</mo><mn>92</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (<span><math><mrow><mn>88</mn><mo>.</mo><mn>43</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>52</mn><mo>.</mo><mn>31</mn><mtext>%</mtext></mrow></math></span>), and <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>739</mn><mo>.</mo><mn>15</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>19</mn><mo>.</mo><mn>77</mn><mtext>%</mtext></mrow></math></span>), for case 3. The influence of the permeability of the porous medium is prominently observed across various combinations of the considered parameters, resulting in diverse flow patterns.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"164 ","pages":"Article 108923"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of unsteady mixed convection in porous corrugated enclosures with magnetic fields\",\"authors\":\"Pankaj Choudhary ,&nbsp;Rajan Kumar\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.108923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we performed a numerical analysis of unsteady two-dimensional coupled natural and mixed convective flows in a porous corrugated geometry under the influence of magnetic field. A higher order compact (HOC) scheme is employed to discretize the nonlinear coupled transport equations. The outcomes of simulations are analyzed across a range of critical parameters, including the Darcy Number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>), Reynolds Number (<span><math><mrow><mn>100</mn></mrow></math></span> to <span><math><mrow><mn>1000</mn></mrow></math></span>), Grashof Number (<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>), Richardson number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> to <span><math><mrow><mn>100</mn></mrow></math></span>), Hartmann number (<span><math><mrow><mn>25</mn></mrow></math></span> to <span><math><mrow><mn>150</mn></mrow></math></span>), and Prandtl Number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>015</mn></mrow></math></span> to <span><math><mrow><mn>10</mn><mo>.</mo><mn>0</mn></mrow></math></span>). Also, analyzing three distinct configurations based on the height of heat sources can provide valuable insights into their thermal performance and Nusselt number variations. The maximum augmentation of the mean Nusselt values on the thermal and non-thermal boundary surfaces in ascending and descending patterns at different critical parameters are viz. <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>87</mn><mo>.</mo><mn>65</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>81</mn><mo>.</mo><mn>12</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>217</mn><mo>.</mo><mn>16</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>62</mn><mo>.</mo><mn>23</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>510</mn><mo>.</mo><mn>30</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>45</mn><mo>.</mo><mn>51</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (<span><math><mrow><mn>42</mn><mo>.</mo><mn>41</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>36</mn><mo>.</mo><mn>13</mn><mtext>%</mtext></mrow></math></span>), and <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>474</mn><mo>.</mo><mn>38</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>32</mn><mo>.</mo><mn>74</mn><mtext>%</mtext></mrow></math></span>), for case 1, <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>19</mn><mo>.</mo><mn>61</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>598</mn><mo>.</mo><mn>34</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>18</mn><mo>.</mo><mn>10</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>66</mn><mo>.</mo><mn>56</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>79</mn><mo>.</mo><mn>62</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>49</mn><mo>.</mo><mn>97</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (<span><math><mrow><mn>41</mn><mo>.</mo><mn>53</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>0</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span>), and <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>442</mn><mo>.</mo><mn>10</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>29</mn><mo>.</mo><mn>70</mn><mtext>%</mtext></mrow></math></span>), for case 2, <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>323</mn><mo>.</mo><mn>78</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>0</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>08</mn><mo>.</mo><mn>54</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>53</mn><mo>.</mo><mn>27</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (<span><math><mrow><mn>97</mn><mo>.</mo><mn>22</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>37</mn><mo>.</mo><mn>92</mn><mtext>%</mtext></mrow></math></span>), <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> (<span><math><mrow><mn>88</mn><mo>.</mo><mn>43</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>52</mn><mo>.</mo><mn>31</mn><mtext>%</mtext></mrow></math></span>), and <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> (<span><math><mrow><mn>739</mn><mo>.</mo><mn>15</mn><mtext>%</mtext></mrow></math></span> &amp; <span><math><mrow><mn>19</mn><mo>.</mo><mn>77</mn><mtext>%</mtext></mrow></math></span>), for case 3. The influence of the permeability of the porous medium is prominently observed across various combinations of the considered parameters, resulting in diverse flow patterns.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"164 \",\"pages\":\"Article 108923\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325003495\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325003495","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们对磁场影响下多孔波纹几何结构中非定常二维耦合自然对流和混合对流进行了数值分析。采用高阶紧化格式对非线性耦合输运方程进行离散化。模拟结果分析了一系列关键参数,包括达西数(10−5至10−1),雷诺数(100至1000),Grashof数(103至106),理查森数(0.1至100),哈特曼数(25至150)和普朗特数(0.015至10.0)。此外,根据热源的高度分析三种不同的结构可以为它们的热性能和努塞尔数变化提供有价值的见解。在不同临界参数下,热边界层和非热边界层面上的Nusselt平均值以上升和下降的方式递增的最大值为Gr (87.65% &;81.12%), Da (217.16% &;62.23%), Ha (510.30% &;45.51%), Re (42.41% &;36.13%), Pr (474.38% &;32.74%),病例1,Gr (19.61% &;598.34%), Da (18.10% &;66.56%), Ha (79.62% &;49.97%), Re (41.53%);0.0%), Pr (442.10% &;29.70%),对于病例2,Gr (323.78% &;0.0%), Da (08.54% &;53.27%), Ha (97.22% &;37.92%), Re (88.43%);52.31%), Pr (739.15% &;19.77%),例3。多孔介质渗透率的影响在考虑参数的各种组合中得到显著观察,从而导致不同的流动模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of unsteady mixed convection in porous corrugated enclosures with magnetic fields
In this study, we performed a numerical analysis of unsteady two-dimensional coupled natural and mixed convective flows in a porous corrugated geometry under the influence of magnetic field. A higher order compact (HOC) scheme is employed to discretize the nonlinear coupled transport equations. The outcomes of simulations are analyzed across a range of critical parameters, including the Darcy Number (105 to 101), Reynolds Number (100 to 1000), Grashof Number (103 to 106), Richardson number (0.1 to 100), Hartmann number (25 to 150), and Prandtl Number (0.015 to 10.0). Also, analyzing three distinct configurations based on the height of heat sources can provide valuable insights into their thermal performance and Nusselt number variations. The maximum augmentation of the mean Nusselt values on the thermal and non-thermal boundary surfaces in ascending and descending patterns at different critical parameters are viz. Gr (87.65% & 81.12%), Da (217.16% & 62.23%), Ha (510.30% & 45.51%), Re (42.41% & 36.13%), and Pr (474.38% & 32.74%), for case 1, Gr (19.61% & 598.34%), Da (18.10% & 66.56%), Ha (79.62% & 49.97%), Re (41.53% & 0.0%), and Pr (442.10% & 29.70%), for case 2, Gr (323.78% & 0.0%), Da (08.54% & 53.27%), Ha (97.22% & 37.92%), Re (88.43% & 52.31%), and Pr (739.15% & 19.77%), for case 3. The influence of the permeability of the porous medium is prominently observed across various combinations of the considered parameters, resulting in diverse flow patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信