{"title":"具有双重防护机制的防污PTFE中空纤维微滤膜","authors":"Qiang Wu, Dapeng Li, Jing Liu, Shijun Long, Yiwan Huang, Xuefeng Li","doi":"10.1021/acs.nanolett.5c01108","DOIUrl":null,"url":null,"abstract":"Polytetrafluorethylene (PTFE) is the preferred material for highly polluted wastewater treatment. Hydrophilic modification of the PTFE hollow fiber membrane can further enhance its filtration performance and durability. Yet, it still remains a challenge to construct a robust hydrophilic coating on the PTFE surface. Here we report a surface engineering strategy of <i>in situ</i> coating a PTFE hollow fiber membrane with poly(vinyl alcohol) (PVA) and polyion complex (PIC) double-layer (DL) hydrogels. The first PVA hydrogel layer was covalently bonded to <i>N</i>-β-(aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTS)-grafted PTFE via a glutaraldehyde (GA)-induced Schiff base reaction and aldol condensation, respectively, while the second PIC hydrogel layer was strongly anchored on PVA through hydrogen bonding and topological entanglements. The resulting PVA/PIC DL hydrogel coating exhibited favorable strength and chemical resistance. Moreover, the double-defense mechanism provided by the hydration layer and polyzwitterionic brushes endowed the membrane with durable microfiltration and antifouling performances by effectively repelling various types of pollutants.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"28 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifouling PTFE Hollow Fiber Microfiltration Membrane with a Double-Defense Mechanism\",\"authors\":\"Qiang Wu, Dapeng Li, Jing Liu, Shijun Long, Yiwan Huang, Xuefeng Li\",\"doi\":\"10.1021/acs.nanolett.5c01108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polytetrafluorethylene (PTFE) is the preferred material for highly polluted wastewater treatment. Hydrophilic modification of the PTFE hollow fiber membrane can further enhance its filtration performance and durability. Yet, it still remains a challenge to construct a robust hydrophilic coating on the PTFE surface. Here we report a surface engineering strategy of <i>in situ</i> coating a PTFE hollow fiber membrane with poly(vinyl alcohol) (PVA) and polyion complex (PIC) double-layer (DL) hydrogels. The first PVA hydrogel layer was covalently bonded to <i>N</i>-β-(aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTS)-grafted PTFE via a glutaraldehyde (GA)-induced Schiff base reaction and aldol condensation, respectively, while the second PIC hydrogel layer was strongly anchored on PVA through hydrogen bonding and topological entanglements. The resulting PVA/PIC DL hydrogel coating exhibited favorable strength and chemical resistance. Moreover, the double-defense mechanism provided by the hydration layer and polyzwitterionic brushes endowed the membrane with durable microfiltration and antifouling performances by effectively repelling various types of pollutants.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01108\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01108","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Antifouling PTFE Hollow Fiber Microfiltration Membrane with a Double-Defense Mechanism
Polytetrafluorethylene (PTFE) is the preferred material for highly polluted wastewater treatment. Hydrophilic modification of the PTFE hollow fiber membrane can further enhance its filtration performance and durability. Yet, it still remains a challenge to construct a robust hydrophilic coating on the PTFE surface. Here we report a surface engineering strategy of in situ coating a PTFE hollow fiber membrane with poly(vinyl alcohol) (PVA) and polyion complex (PIC) double-layer (DL) hydrogels. The first PVA hydrogel layer was covalently bonded to N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTS)-grafted PTFE via a glutaraldehyde (GA)-induced Schiff base reaction and aldol condensation, respectively, while the second PIC hydrogel layer was strongly anchored on PVA through hydrogen bonding and topological entanglements. The resulting PVA/PIC DL hydrogel coating exhibited favorable strength and chemical resistance. Moreover, the double-defense mechanism provided by the hydration layer and polyzwitterionic brushes endowed the membrane with durable microfiltration and antifouling performances by effectively repelling various types of pollutants.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.