Zerui Li , Jinsheng Zhang , Simon A. Wegener , Yingying Yan , Xiongzhuo Jiang , Kun Sun , Guangjiu Pan , Tianle Zheng , Matthias Schwartzkopf , Sarathlal Koyiloth Vayalil , Chang-Qi Ma , Peter Müller-Buschbaum
{"title":"基于 BTP-4F-12 的有机太阳能电池随温度变化的热行为","authors":"Zerui Li , Jinsheng Zhang , Simon A. Wegener , Yingying Yan , Xiongzhuo Jiang , Kun Sun , Guangjiu Pan , Tianle Zheng , Matthias Schwartzkopf , Sarathlal Koyiloth Vayalil , Chang-Qi Ma , Peter Müller-Buschbaum","doi":"10.1016/j.nanoen.2025.111043","DOIUrl":null,"url":null,"abstract":"<div><div>Heat is one key factor contributing to performance decreases, which would lead to inevitable morphological changes in the active layers. Common research with <em>ex</em>-<em>situ</em> characterizations ignored the degradation process kinetics, which hinders a comprehensive insight into the underlying thermal degradation mechanisms in organic solar cells (OSCs). In this study, the device thermal stability of BTP-4F-12-based solar cells is investigated with <em>operando</em> tracking of grazing-incidence wide/small-angle X-ray scattering (GIWAXS/GISAXS), providing a deep understanding of temperature-dependent degradation processes. The OSCs show a harsh open-circuit voltage (<em>V</em><sub>OC</sub>) loss with increasing temperature, which recovers mostly after getting cooled to low temperature. This behavior is attributed to the charge carrier recombination, π-π stacking distances, and aggregated domains at various temperatures. The irreversible loss of FF and short-circuit current density (<em>J</em><sub>SC</sub>) during aging is due to changes in crystallinity and dense π-π stacking. Furthermore, no obvious correlation is found for the sharp decreased FF for the final aged solar cells, suggesting that such a degradation originates not from high temperature but more likely from the heating/cooling process. PBDBTCl-DTBT:BTP-4F-12 solar cells suffer from a more severe thermal degradation compared with PBDB-TF-T1:BTP-4F-12, where the bad miscibility of donor and acceptor is not beneficial to an optimized stable active layer and the intrinsic thermal properties of the polymer donor also affect significantly the stability of the blend films and solar cells. This study reveals a temperature-dependent thermal degradation of OSCs, which broadens our knowledge from common <em>ex-situ</em> characterizations and deepens our understanding of thermal degradation mechanism.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"140 ","pages":"Article 111043"},"PeriodicalIF":17.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent thermal behavior of BTP-4F-12-based organic solar cells\",\"authors\":\"Zerui Li , Jinsheng Zhang , Simon A. Wegener , Yingying Yan , Xiongzhuo Jiang , Kun Sun , Guangjiu Pan , Tianle Zheng , Matthias Schwartzkopf , Sarathlal Koyiloth Vayalil , Chang-Qi Ma , Peter Müller-Buschbaum\",\"doi\":\"10.1016/j.nanoen.2025.111043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat is one key factor contributing to performance decreases, which would lead to inevitable morphological changes in the active layers. Common research with <em>ex</em>-<em>situ</em> characterizations ignored the degradation process kinetics, which hinders a comprehensive insight into the underlying thermal degradation mechanisms in organic solar cells (OSCs). In this study, the device thermal stability of BTP-4F-12-based solar cells is investigated with <em>operando</em> tracking of grazing-incidence wide/small-angle X-ray scattering (GIWAXS/GISAXS), providing a deep understanding of temperature-dependent degradation processes. The OSCs show a harsh open-circuit voltage (<em>V</em><sub>OC</sub>) loss with increasing temperature, which recovers mostly after getting cooled to low temperature. This behavior is attributed to the charge carrier recombination, π-π stacking distances, and aggregated domains at various temperatures. The irreversible loss of FF and short-circuit current density (<em>J</em><sub>SC</sub>) during aging is due to changes in crystallinity and dense π-π stacking. Furthermore, no obvious correlation is found for the sharp decreased FF for the final aged solar cells, suggesting that such a degradation originates not from high temperature but more likely from the heating/cooling process. PBDBTCl-DTBT:BTP-4F-12 solar cells suffer from a more severe thermal degradation compared with PBDB-TF-T1:BTP-4F-12, where the bad miscibility of donor and acceptor is not beneficial to an optimized stable active layer and the intrinsic thermal properties of the polymer donor also affect significantly the stability of the blend films and solar cells. This study reveals a temperature-dependent thermal degradation of OSCs, which broadens our knowledge from common <em>ex-situ</em> characterizations and deepens our understanding of thermal degradation mechanism.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"140 \",\"pages\":\"Article 111043\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525004021\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525004021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Temperature-dependent thermal behavior of BTP-4F-12-based organic solar cells
Heat is one key factor contributing to performance decreases, which would lead to inevitable morphological changes in the active layers. Common research with ex-situ characterizations ignored the degradation process kinetics, which hinders a comprehensive insight into the underlying thermal degradation mechanisms in organic solar cells (OSCs). In this study, the device thermal stability of BTP-4F-12-based solar cells is investigated with operando tracking of grazing-incidence wide/small-angle X-ray scattering (GIWAXS/GISAXS), providing a deep understanding of temperature-dependent degradation processes. The OSCs show a harsh open-circuit voltage (VOC) loss with increasing temperature, which recovers mostly after getting cooled to low temperature. This behavior is attributed to the charge carrier recombination, π-π stacking distances, and aggregated domains at various temperatures. The irreversible loss of FF and short-circuit current density (JSC) during aging is due to changes in crystallinity and dense π-π stacking. Furthermore, no obvious correlation is found for the sharp decreased FF for the final aged solar cells, suggesting that such a degradation originates not from high temperature but more likely from the heating/cooling process. PBDBTCl-DTBT:BTP-4F-12 solar cells suffer from a more severe thermal degradation compared with PBDB-TF-T1:BTP-4F-12, where the bad miscibility of donor and acceptor is not beneficial to an optimized stable active layer and the intrinsic thermal properties of the polymer donor also affect significantly the stability of the blend films and solar cells. This study reveals a temperature-dependent thermal degradation of OSCs, which broadens our knowledge from common ex-situ characterizations and deepens our understanding of thermal degradation mechanism.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.