张量状态bcb¯c¯的性质

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
S. S. Agaev, K. Azizi, H. Sundu
{"title":"张量状态bcb¯c¯的性质","authors":"S. S. Agaev, K. Azizi, H. Sundu","doi":"10.1103/physrevd.111.074025","DOIUrl":null,"url":null,"abstract":"Spectroscopic parameters and decays of the exotic tensor meson T</a:mi></a:math> with content <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>b</c:mi><c:mi>c</c:mi><c:mover accent=\"true\"><c:mi>b</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover><c:mover accent=\"true\"><c:mi>c</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover></c:math> are explored in the context of the diquark-antidiquark model. We treat it as a state built of axial-vector diquark <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msup><i:mrow><i:mi>b</i:mi></i:mrow><i:mrow><i:mi>T</i:mi></i:mrow></i:msup><i:mi>C</i:mi><i:msub><i:mrow><i:mi>γ</i:mi></i:mrow><i:mrow><i:mi>μ</i:mi></i:mrow></i:msub><i:mi>c</i:mi></i:mrow></i:math> and antidiquark <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mover accent=\"true\"><k:mrow><k:mi>b</k:mi></k:mrow><k:mrow><k:mo stretchy=\"false\">¯</k:mo></k:mrow></k:mover><k:msub><k:mrow><k:mi>γ</k:mi></k:mrow><k:mrow><k:mi>ν</k:mi></k:mrow></k:msub><k:mi>C</k:mi><k:msup><k:mrow><k:mover accent=\"true\"><k:mrow><k:mi>c</k:mi></k:mrow><k:mrow><k:mo stretchy=\"false\">¯</k:mo></k:mrow></k:mover></k:mrow><k:mrow><k:mi>T</k:mi></k:mrow></k:msup></k:mrow></k:math>, where <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>C</q:mi></q:math> is the charge conjugation matrix. The mass <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>m</s:mi></s:math> and current coupling <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi mathvariant=\"normal\">Λ</u:mi></u:math> of this tetraquark are extracted from two-point sum rules. Our result for <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mrow><x:mi>m</x:mi><x:mo>=</x:mo><x:mo stretchy=\"false\">(</x:mo><x:mn>12.70</x:mn><x:mo>±</x:mo><x:mn>0.09</x:mn><x:mo stretchy=\"false\">)</x:mo><x:mtext> </x:mtext><x:mtext> </x:mtext><x:mi>GeV</x:mi></x:mrow></x:math> proves that <bb:math xmlns:bb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bb:mi>T</bb:mi></bb:math> is unstable against strong dissociations to two-meson final states. Its dominant decay channels are processes <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:mrow><db:mi>T</db:mi><db:mo stretchy=\"false\">→</db:mo><db:mi>J</db:mi><db:mo>/</db:mo><db:mi>ψ</db:mi><db:mi mathvariant=\"normal\">ϒ</db:mi></db:mrow></db:math>, <hb:math xmlns:hb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><hb:mrow><hb:msub><hb:mrow><hb:mi>η</hb:mi></hb:mrow><hb:mrow><hb:mi>b</hb:mi></hb:mrow></hb:msub><hb:msub><hb:mrow><hb:mi>η</hb:mi></hb:mrow><hb:mrow><hb:mi>c</hb:mi></hb:mrow></hb:msub></hb:mrow></hb:math>, and <jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jb:mrow><jb:msubsup><jb:mrow><jb:mi>B</jb:mi></jb:mrow><jb:mrow><jb:mi>c</jb:mi></jb:mrow><jb:mrow><jb:mo stretchy=\"false\">(</jb:mo><jb:mo>*</jb:mo><jb:mo stretchy=\"false\">)</jb:mo><jb:mo>+</jb:mo></jb:mrow></jb:msubsup><jb:msubsup><jb:mrow><jb:mi>B</jb:mi></jb:mrow><jb:mrow><jb:mi>c</jb:mi></jb:mrow><jb:mrow><jb:mo stretchy=\"false\">(</jb:mo><jb:mo>*</jb:mo><jb:mo stretchy=\"false\">)</jb:mo><jb:mo>−</jb:mo></jb:mrow></jb:msubsup></jb:mrow></jb:math>. Kinematically allowed transformations of <pb:math xmlns:pb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pb:mi>T</pb:mi></pb:math> include also decays <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mrow><rb:mi>T</rb:mi><rb:mo stretchy=\"false\">→</rb:mo><rb:msup><rb:mrow><rb:mi>D</rb:mi></rb:mrow><rb:mrow><rb:mo stretchy=\"false\">(</rb:mo><rb:mo>*</rb:mo><rb:mo stretchy=\"false\">)</rb:mo><rb:mo>+</rb:mo></rb:mrow></rb:msup><rb:msup><rb:mrow><rb:mi>D</rb:mi></rb:mrow><rb:mrow><rb:mo stretchy=\"false\">(</rb:mo><rb:mo>*</rb:mo><rb:mo stretchy=\"false\">)</rb:mo><rb:mo>−</rb:mo></rb:mrow></rb:msup></rb:mrow></rb:math> and <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mrow><yb:msup><yb:mrow><yb:mi>D</yb:mi></yb:mrow><yb:mrow><yb:mo stretchy=\"false\">(</yb:mo><yb:mo>*</yb:mo><yb:mo stretchy=\"false\">)</yb:mo><yb:mn>0</yb:mn></yb:mrow></yb:msup><yb:msup><yb:mrow><yb:mover accent=\"true\"><yb:mrow><yb:mi>D</yb:mi></yb:mrow><yb:mrow><yb:mo stretchy=\"false\">¯</yb:mo></yb:mrow></yb:mover></yb:mrow><yb:mrow><yb:mo stretchy=\"false\">(</yb:mo><yb:mo>*</yb:mo><yb:mo stretchy=\"false\">)</yb:mo><yb:mn>0</yb:mn></yb:mrow></yb:msup></yb:mrow></yb:math>, which are generated by <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi>b</gc:mi><gc:mover accent=\"true\"><gc:mi>b</gc:mi><gc:mo stretchy=\"false\">¯</gc:mo></gc:mover></gc:math> annihilation inside of <kc:math xmlns:kc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kc:mi>T</kc:mi></kc:math>. The full width of <mc:math xmlns:mc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mc:mi>T</mc:mi></mc:math> is estimated by considering all of these channels. Their partial widths are calculated by invoking methods of three-point sum rule approach, which are required to evaluate strong couplings at corresponding tetraquark-meson-meson vertices. Our predictions for the mass and width <oc:math xmlns:oc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><oc:mrow><oc:msub><oc:mrow><oc:mi mathvariant=\"normal\">Γ</oc:mi></oc:mrow><oc:mrow><oc:mi>T</oc:mi></oc:mrow></oc:msub><oc:mo>=</oc:mo><oc:mo stretchy=\"false\">(</oc:mo><oc:mn>117.4</oc:mn><oc:mo>±</oc:mo><oc:mn>15.9</oc:mn><oc:mo stretchy=\"false\">)</oc:mo><oc:mtext> </oc:mtext><oc:mtext> </oc:mtext><oc:mi>MeV</oc:mi></oc:mrow></oc:math> of the tensor state <tc:math xmlns:tc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tc:mi>T</tc:mi></tc:math> provide useful information for experimental studies of fully heavy four-quark exotic structures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of the tensor state bcb¯c¯\",\"authors\":\"S. S. Agaev, K. Azizi, H. Sundu\",\"doi\":\"10.1103/physrevd.111.074025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectroscopic parameters and decays of the exotic tensor meson T</a:mi></a:math> with content <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>b</c:mi><c:mi>c</c:mi><c:mover accent=\\\"true\\\"><c:mi>b</c:mi><c:mo stretchy=\\\"false\\\">¯</c:mo></c:mover><c:mover accent=\\\"true\\\"><c:mi>c</c:mi><c:mo stretchy=\\\"false\\\">¯</c:mo></c:mover></c:math> are explored in the context of the diquark-antidiquark model. We treat it as a state built of axial-vector diquark <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:msup><i:mrow><i:mi>b</i:mi></i:mrow><i:mrow><i:mi>T</i:mi></i:mrow></i:msup><i:mi>C</i:mi><i:msub><i:mrow><i:mi>γ</i:mi></i:mrow><i:mrow><i:mi>μ</i:mi></i:mrow></i:msub><i:mi>c</i:mi></i:mrow></i:math> and antidiquark <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mrow><k:mover accent=\\\"true\\\"><k:mrow><k:mi>b</k:mi></k:mrow><k:mrow><k:mo stretchy=\\\"false\\\">¯</k:mo></k:mrow></k:mover><k:msub><k:mrow><k:mi>γ</k:mi></k:mrow><k:mrow><k:mi>ν</k:mi></k:mrow></k:msub><k:mi>C</k:mi><k:msup><k:mrow><k:mover accent=\\\"true\\\"><k:mrow><k:mi>c</k:mi></k:mrow><k:mrow><k:mo stretchy=\\\"false\\\">¯</k:mo></k:mrow></k:mover></k:mrow><k:mrow><k:mi>T</k:mi></k:mrow></k:msup></k:mrow></k:math>, where <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>C</q:mi></q:math> is the charge conjugation matrix. The mass <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>m</s:mi></s:math> and current coupling <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi mathvariant=\\\"normal\\\">Λ</u:mi></u:math> of this tetraquark are extracted from two-point sum rules. Our result for <x:math xmlns:x=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><x:mrow><x:mi>m</x:mi><x:mo>=</x:mo><x:mo stretchy=\\\"false\\\">(</x:mo><x:mn>12.70</x:mn><x:mo>±</x:mo><x:mn>0.09</x:mn><x:mo stretchy=\\\"false\\\">)</x:mo><x:mtext> </x:mtext><x:mtext> </x:mtext><x:mi>GeV</x:mi></x:mrow></x:math> proves that <bb:math xmlns:bb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><bb:mi>T</bb:mi></bb:math> is unstable against strong dissociations to two-meson final states. Its dominant decay channels are processes <db:math xmlns:db=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><db:mrow><db:mi>T</db:mi><db:mo stretchy=\\\"false\\\">→</db:mo><db:mi>J</db:mi><db:mo>/</db:mo><db:mi>ψ</db:mi><db:mi mathvariant=\\\"normal\\\">ϒ</db:mi></db:mrow></db:math>, <hb:math xmlns:hb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><hb:mrow><hb:msub><hb:mrow><hb:mi>η</hb:mi></hb:mrow><hb:mrow><hb:mi>b</hb:mi></hb:mrow></hb:msub><hb:msub><hb:mrow><hb:mi>η</hb:mi></hb:mrow><hb:mrow><hb:mi>c</hb:mi></hb:mrow></hb:msub></hb:mrow></hb:math>, and <jb:math xmlns:jb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><jb:mrow><jb:msubsup><jb:mrow><jb:mi>B</jb:mi></jb:mrow><jb:mrow><jb:mi>c</jb:mi></jb:mrow><jb:mrow><jb:mo stretchy=\\\"false\\\">(</jb:mo><jb:mo>*</jb:mo><jb:mo stretchy=\\\"false\\\">)</jb:mo><jb:mo>+</jb:mo></jb:mrow></jb:msubsup><jb:msubsup><jb:mrow><jb:mi>B</jb:mi></jb:mrow><jb:mrow><jb:mi>c</jb:mi></jb:mrow><jb:mrow><jb:mo stretchy=\\\"false\\\">(</jb:mo><jb:mo>*</jb:mo><jb:mo stretchy=\\\"false\\\">)</jb:mo><jb:mo>−</jb:mo></jb:mrow></jb:msubsup></jb:mrow></jb:math>. Kinematically allowed transformations of <pb:math xmlns:pb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><pb:mi>T</pb:mi></pb:math> include also decays <rb:math xmlns:rb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rb:mrow><rb:mi>T</rb:mi><rb:mo stretchy=\\\"false\\\">→</rb:mo><rb:msup><rb:mrow><rb:mi>D</rb:mi></rb:mrow><rb:mrow><rb:mo stretchy=\\\"false\\\">(</rb:mo><rb:mo>*</rb:mo><rb:mo stretchy=\\\"false\\\">)</rb:mo><rb:mo>+</rb:mo></rb:mrow></rb:msup><rb:msup><rb:mrow><rb:mi>D</rb:mi></rb:mrow><rb:mrow><rb:mo stretchy=\\\"false\\\">(</rb:mo><rb:mo>*</rb:mo><rb:mo stretchy=\\\"false\\\">)</rb:mo><rb:mo>−</rb:mo></rb:mrow></rb:msup></rb:mrow></rb:math> and <yb:math xmlns:yb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><yb:mrow><yb:msup><yb:mrow><yb:mi>D</yb:mi></yb:mrow><yb:mrow><yb:mo stretchy=\\\"false\\\">(</yb:mo><yb:mo>*</yb:mo><yb:mo stretchy=\\\"false\\\">)</yb:mo><yb:mn>0</yb:mn></yb:mrow></yb:msup><yb:msup><yb:mrow><yb:mover accent=\\\"true\\\"><yb:mrow><yb:mi>D</yb:mi></yb:mrow><yb:mrow><yb:mo stretchy=\\\"false\\\">¯</yb:mo></yb:mrow></yb:mover></yb:mrow><yb:mrow><yb:mo stretchy=\\\"false\\\">(</yb:mo><yb:mo>*</yb:mo><yb:mo stretchy=\\\"false\\\">)</yb:mo><yb:mn>0</yb:mn></yb:mrow></yb:msup></yb:mrow></yb:math>, which are generated by <gc:math xmlns:gc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gc:mi>b</gc:mi><gc:mover accent=\\\"true\\\"><gc:mi>b</gc:mi><gc:mo stretchy=\\\"false\\\">¯</gc:mo></gc:mover></gc:math> annihilation inside of <kc:math xmlns:kc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><kc:mi>T</kc:mi></kc:math>. The full width of <mc:math xmlns:mc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mc:mi>T</mc:mi></mc:math> is estimated by considering all of these channels. Their partial widths are calculated by invoking methods of three-point sum rule approach, which are required to evaluate strong couplings at corresponding tetraquark-meson-meson vertices. Our predictions for the mass and width <oc:math xmlns:oc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><oc:mrow><oc:msub><oc:mrow><oc:mi mathvariant=\\\"normal\\\">Γ</oc:mi></oc:mrow><oc:mrow><oc:mi>T</oc:mi></oc:mrow></oc:msub><oc:mo>=</oc:mo><oc:mo stretchy=\\\"false\\\">(</oc:mo><oc:mn>117.4</oc:mn><oc:mo>±</oc:mo><oc:mn>15.9</oc:mn><oc:mo stretchy=\\\"false\\\">)</oc:mo><oc:mtext> </oc:mtext><oc:mtext> </oc:mtext><oc:mi>MeV</oc:mi></oc:mrow></oc:math> of the tensor state <tc:math xmlns:tc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><tc:mi>T</tc:mi></tc:math> provide useful information for experimental studies of fully heavy four-quark exotic structures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.074025\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.074025","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在重夸克-反重夸克模型的背景下,研究了含有bcb¯c¯的奇异张量介子T的光谱参数和衰减。我们把它看作是由轴矢量重夸克bTCγμc和反重夸克b¯γνCc¯T构成的状态,其中C为电荷共轭矩阵。从两点和规则中提取了该四夸克的质量m和电流耦合Λ。我们对m=(12.70±0.09)GeV的计算结果证明,T对于两介子末态的强解离是不稳定的。其主要衰减通道是T→J/ γ、ηbηc和Bc(*)+Bc(*)−。运动学上允许的T变换还包括衰变T→D(*)+D(*)−和D(*)0D¯(*)0,它们是由T内部的bb¯湮灭产生的。T的全宽度是通过考虑所有这些通道来估计的。它们的部分宽度通过调用三点和规则方法来计算,这需要在相应的四夸克-介子-介子顶点上评估强耦合。我们对张量态T的质量和宽度ΓT=(117.4±15.9)MeV的预测为全重四夸克奇异结构的实验研究提供了有用的信息。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of the tensor state bcb¯c¯
Spectroscopic parameters and decays of the exotic tensor meson T with content bcb¯c¯ are explored in the context of the diquark-antidiquark model. We treat it as a state built of axial-vector diquark bTCγμc and antidiquark b¯γνCc¯T, where C is the charge conjugation matrix. The mass m and current coupling Λ of this tetraquark are extracted from two-point sum rules. Our result for m=(12.70±0.09) GeV proves that T is unstable against strong dissociations to two-meson final states. Its dominant decay channels are processes TJ/ψϒ, ηbηc, and Bc(*)+Bc(*). Kinematically allowed transformations of T include also decays TD(*)+D(*) and D(*)0D¯(*)0, which are generated by bb¯ annihilation inside of T. The full width of T is estimated by considering all of these channels. Their partial widths are calculated by invoking methods of three-point sum rule approach, which are required to evaluate strong couplings at corresponding tetraquark-meson-meson vertices. Our predictions for the mass and width ΓT=(117.4±15.9) MeV of the tensor state T provide useful information for experimental studies of fully heavy four-quark exotic structures. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信