富马酸在疾病中整合代谢和免疫。

Jie Cheng,Yifeng Xiao,Peng Jiang
{"title":"富马酸在疾病中整合代谢和免疫。","authors":"Jie Cheng,Yifeng Xiao,Peng Jiang","doi":"10.1016/j.tem.2025.03.008","DOIUrl":null,"url":null,"abstract":"Fumarate is a key metabolite produced primarily by the tricarboxylic acid (TCA) and urea cycles. In addition to having a metabolic role, its electrophilicity enables it to covalently modify cysteines; moreover, because of its α-ketoglutarate (α-KG)-like structure, it can also act as a competitive inhibitor of α-KG-dependent dioxygenases for epigenetic remodeling. Recent advances have broadened the role of fumarate as a bridge between metabolism and both innate and adaptive immunity, suggesting potentially important functions in anticancer immunity and autoimmune diseases. Here we review the connections between fumarate metabolism and immunity; we describe the mechanisms of fumarate regulation in cancer, autoimmunity, and other diseases; and we explore the clinical implications of fumarate and its esters for immunotherapy.","PeriodicalId":23301,"journal":{"name":"Trends in Endocrinology & Metabolism","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fumarate integrates metabolism and immunity in diseases.\",\"authors\":\"Jie Cheng,Yifeng Xiao,Peng Jiang\",\"doi\":\"10.1016/j.tem.2025.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fumarate is a key metabolite produced primarily by the tricarboxylic acid (TCA) and urea cycles. In addition to having a metabolic role, its electrophilicity enables it to covalently modify cysteines; moreover, because of its α-ketoglutarate (α-KG)-like structure, it can also act as a competitive inhibitor of α-KG-dependent dioxygenases for epigenetic remodeling. Recent advances have broadened the role of fumarate as a bridge between metabolism and both innate and adaptive immunity, suggesting potentially important functions in anticancer immunity and autoimmune diseases. Here we review the connections between fumarate metabolism and immunity; we describe the mechanisms of fumarate regulation in cancer, autoimmunity, and other diseases; and we explore the clinical implications of fumarate and its esters for immunotherapy.\",\"PeriodicalId\":23301,\"journal\":{\"name\":\"Trends in Endocrinology & Metabolism\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Endocrinology & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tem.2025.03.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tem.2025.03.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

富马酸盐是主要由三羧酸(TCA)和尿素循环产生的关键代谢物。除了具有代谢作用外,其亲电性使其能够共价修饰半胱氨酸;此外,由于其α-酮戊二酸(α-KG)样结构,它还可以作为α-KG依赖性双加氧酶的竞争性抑制剂,用于表观遗传重塑。最近的进展扩大了富马酸作为代谢与先天免疫和适应性免疫之间的桥梁的作用,表明其在抗癌免疫和自身免疫性疾病中具有潜在的重要功能。本文综述了富马酸代谢与免疫之间的联系;我们描述了富马酸在癌症、自身免疫和其他疾病中的调节机制;并探讨富马酸酯及其酯类在免疫治疗中的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fumarate integrates metabolism and immunity in diseases.
Fumarate is a key metabolite produced primarily by the tricarboxylic acid (TCA) and urea cycles. In addition to having a metabolic role, its electrophilicity enables it to covalently modify cysteines; moreover, because of its α-ketoglutarate (α-KG)-like structure, it can also act as a competitive inhibitor of α-KG-dependent dioxygenases for epigenetic remodeling. Recent advances have broadened the role of fumarate as a bridge between metabolism and both innate and adaptive immunity, suggesting potentially important functions in anticancer immunity and autoimmune diseases. Here we review the connections between fumarate metabolism and immunity; we describe the mechanisms of fumarate regulation in cancer, autoimmunity, and other diseases; and we explore the clinical implications of fumarate and its esters for immunotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信