智能安全的电动汽车无线电力传输:探索物联网、边缘计算和区块链解决方案

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Gaurav Kumar, Suresh Mikkili, Praveen Kumar Bonthagorla
{"title":"智能安全的电动汽车无线电力传输:探索物联网、边缘计算和区块链解决方案","authors":"Gaurav Kumar,&nbsp;Suresh Mikkili,&nbsp;Praveen Kumar Bonthagorla","doi":"10.1049/els2/9926412","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Wireless power transfer (WPT) has been developed as a transformative alternative to traditional plug-in charging for electric vehicles (EVs), offering significant developments in mobile charging. EVs are charged while moving on the roads. This review provides a comprehensive overview of various WPT technologies, including inductive power transfer (IPT), resonant inductive transfer, capacitive power transfer (CPT), microwave power transfer (MWPT) and laser power transfer (LPT), for both near-field and far-field applications. Different WPT topologies, such as series–series (SS), series–parallel (SP), parallel–parallel (PP), parallel–series (PS), LC-S, LC-P, S-SP and LC-LC, are analysed for their specific advantages in EV applications. Additionally, key standards for WPT, including SAE J2954, IEC 61980, ISO 19363, IEEE C95.1-2345 and TA-15, are providing a regulatory framework for safe and efficient implementation. The paper also explores the integration of artificial intelligence (AI) techniques like deep Q-network (DQN) and large language model (LLM) in the WPT system. Further, smart road technologies and cybersecurity measures in WPT systems, with a particular focus on issues such as data protection for cyberattacks, are discussed. The role of the Internet of Things (IoT) and edge computing in monitoring and controlling EVs for optimal charging is discussed. Furthermore, the application of blockchain technology in WPT is discussed. The advancements in coil design are also discussed. Finally, the challenges and limitations of WPT, such as energy transfer efficiency, misalignment of coils, electromagnetic interference (EMI), safety and security, are discussed.</p>\n </div>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/els2/9926412","citationCount":"0","resultStr":"{\"title\":\"Smart and Secure Wireless Power Transfer for EVs: Exploring IoT, Edge Computing and Blockchain Solutions\",\"authors\":\"Gaurav Kumar,&nbsp;Suresh Mikkili,&nbsp;Praveen Kumar Bonthagorla\",\"doi\":\"10.1049/els2/9926412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Wireless power transfer (WPT) has been developed as a transformative alternative to traditional plug-in charging for electric vehicles (EVs), offering significant developments in mobile charging. EVs are charged while moving on the roads. This review provides a comprehensive overview of various WPT technologies, including inductive power transfer (IPT), resonant inductive transfer, capacitive power transfer (CPT), microwave power transfer (MWPT) and laser power transfer (LPT), for both near-field and far-field applications. Different WPT topologies, such as series–series (SS), series–parallel (SP), parallel–parallel (PP), parallel–series (PS), LC-S, LC-P, S-SP and LC-LC, are analysed for their specific advantages in EV applications. Additionally, key standards for WPT, including SAE J2954, IEC 61980, ISO 19363, IEEE C95.1-2345 and TA-15, are providing a regulatory framework for safe and efficient implementation. The paper also explores the integration of artificial intelligence (AI) techniques like deep Q-network (DQN) and large language model (LLM) in the WPT system. Further, smart road technologies and cybersecurity measures in WPT systems, with a particular focus on issues such as data protection for cyberattacks, are discussed. The role of the Internet of Things (IoT) and edge computing in monitoring and controlling EVs for optimal charging is discussed. Furthermore, the application of blockchain technology in WPT is discussed. The advancements in coil design are also discussed. Finally, the challenges and limitations of WPT, such as energy transfer efficiency, misalignment of coils, electromagnetic interference (EMI), safety and security, are discussed.</p>\\n </div>\",\"PeriodicalId\":48518,\"journal\":{\"name\":\"IET Electrical Systems in Transportation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/els2/9926412\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Electrical Systems in Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2/9926412\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2/9926412","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线电力传输技术(WPT)已成为电动汽车(ev)传统插电式充电的革命性替代方案,为移动充电提供了重大发展。电动汽车是在路上行驶时充电的。本文综述了各种WPT技术,包括感应功率传输(IPT)、谐振感应功率传输、电容功率传输(CPT)、微波功率传输(MWPT)和激光功率传输(LPT),用于近场和远场应用。分析了不同的WPT拓扑,如串联-串联(SS)、串联-并联(SP)、并联-并联(PP)、并联-串联(PS)、LC-S、LC-P、S-SP和LC-LC在电动汽车应用中的具体优势。此外,WPT的关键标准,包括SAE J2954、IEC 61980、ISO 19363、IEEE C95.1-2345和TA-15,为安全高效的实施提供了监管框架。本文还探讨了深度q -网络(DQN)和大语言模型(LLM)等人工智能(AI)技术在WPT系统中的集成。此外,还讨论了WPT系统中的智能道路技术和网络安全措施,特别关注网络攻击的数据保护等问题。讨论了物联网(IoT)和边缘计算在监测和控制电动汽车以实现最佳充电中的作用。讨论了区块链技术在WPT中的应用。讨论了线圈设计方面的进展。最后,讨论了WPT技术在能量传递效率、线圈错位、电磁干扰、安全性等方面的挑战和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Smart and Secure Wireless Power Transfer for EVs: Exploring IoT, Edge Computing and Blockchain Solutions

Smart and Secure Wireless Power Transfer for EVs: Exploring IoT, Edge Computing and Blockchain Solutions

Wireless power transfer (WPT) has been developed as a transformative alternative to traditional plug-in charging for electric vehicles (EVs), offering significant developments in mobile charging. EVs are charged while moving on the roads. This review provides a comprehensive overview of various WPT technologies, including inductive power transfer (IPT), resonant inductive transfer, capacitive power transfer (CPT), microwave power transfer (MWPT) and laser power transfer (LPT), for both near-field and far-field applications. Different WPT topologies, such as series–series (SS), series–parallel (SP), parallel–parallel (PP), parallel–series (PS), LC-S, LC-P, S-SP and LC-LC, are analysed for their specific advantages in EV applications. Additionally, key standards for WPT, including SAE J2954, IEC 61980, ISO 19363, IEEE C95.1-2345 and TA-15, are providing a regulatory framework for safe and efficient implementation. The paper also explores the integration of artificial intelligence (AI) techniques like deep Q-network (DQN) and large language model (LLM) in the WPT system. Further, smart road technologies and cybersecurity measures in WPT systems, with a particular focus on issues such as data protection for cyberattacks, are discussed. The role of the Internet of Things (IoT) and edge computing in monitoring and controlling EVs for optimal charging is discussed. Furthermore, the application of blockchain technology in WPT is discussed. The advancements in coil design are also discussed. Finally, the challenges and limitations of WPT, such as energy transfer efficiency, misalignment of coils, electromagnetic interference (EMI), safety and security, are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
4.30%
发文量
18
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信