基于热辅助体积激光诱导荧光的三维温度诊断

IF 2 3区 物理与天体物理 Q3 OPTICS
Shengbo Tang, Xingyu Zhou, Yuan Ye, Wenjiang Xu
{"title":"基于热辅助体积激光诱导荧光的三维温度诊断","authors":"Shengbo Tang,&nbsp;Xingyu Zhou,&nbsp;Yuan Ye,&nbsp;Wenjiang Xu","doi":"10.1007/s00340-025-08466-3","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduces a novel application of three-dimensional (3D) combustion thermometry through the thermally-assisted volumetric laser-induced fluorescence, namely the TAVLIF technique. The TAVLIF method is designed to provide quantitative 3D temperature diagnostics using a single dye-laser system, combining the advantage of tomographic imaging with the thermally-assisted LIF approach. The technique employs the <i>A²Σ⁺</i>←<i>X²Π</i> (0, 0) band Q₁(7) transition to excite OH radicals within a controlled Bunsen burner flame. Following excitation, the fluorescence emitted from the resonant (0, 0) and non-resonant (1, 0) vibrational bands is captured sequentially by an intensified camera, facilitating the reconstruction of the 3D fluorescence field. Utilizing the axisymmetric and stable properties of the burner flame, we reconstruct the 3D distribution of fluorescence signals from both bands. The resulting 3D temperature field is determined by the ratio of fluorescence intensities between the two bands, employing a novel ternary model calibrated experimentally to relate temperature to fluorescence ratio. After accounting for acquisition errors such as reflection and scattering of excitation light, as well as reconstruction and temperature calculation errors, the relative error remains below 6%. This research demonstrates the cost-effectiveness (only one dye laser system), accuracy, and reliability of the TAVLIF technique in diagnosing 3D temperature fields within combustion processes.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional temperature diagnostics based on thermally-assisted volumetric laser-induced fluorescence\",\"authors\":\"Shengbo Tang,&nbsp;Xingyu Zhou,&nbsp;Yuan Ye,&nbsp;Wenjiang Xu\",\"doi\":\"10.1007/s00340-025-08466-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research introduces a novel application of three-dimensional (3D) combustion thermometry through the thermally-assisted volumetric laser-induced fluorescence, namely the TAVLIF technique. The TAVLIF method is designed to provide quantitative 3D temperature diagnostics using a single dye-laser system, combining the advantage of tomographic imaging with the thermally-assisted LIF approach. The technique employs the <i>A²Σ⁺</i>←<i>X²Π</i> (0, 0) band Q₁(7) transition to excite OH radicals within a controlled Bunsen burner flame. Following excitation, the fluorescence emitted from the resonant (0, 0) and non-resonant (1, 0) vibrational bands is captured sequentially by an intensified camera, facilitating the reconstruction of the 3D fluorescence field. Utilizing the axisymmetric and stable properties of the burner flame, we reconstruct the 3D distribution of fluorescence signals from both bands. The resulting 3D temperature field is determined by the ratio of fluorescence intensities between the two bands, employing a novel ternary model calibrated experimentally to relate temperature to fluorescence ratio. After accounting for acquisition errors such as reflection and scattering of excitation light, as well as reconstruction and temperature calculation errors, the relative error remains below 6%. This research demonstrates the cost-effectiveness (only one dye laser system), accuracy, and reliability of the TAVLIF technique in diagnosing 3D temperature fields within combustion processes.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"131 5\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-025-08466-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08466-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种利用热辅助体积激光诱导荧光技术进行三维(3D)燃烧测温的新应用,即TAVLIF技术。TAVLIF方法旨在使用单个染料激光系统提供定量的3D温度诊断,将层析成像的优势与热辅助LIF方法相结合。该技术采用A²Σ⁺←X²Π(0,0)带Q₁(7)跃迁,在可控的本生灯火焰中激发OH自由基。激发后,增强相机依次捕获共振(0,0)和非共振(1,0)振动带发出的荧光,便于三维荧光场的重建。利用燃烧器火焰的轴对称和稳定特性,重建了两个波段荧光信号的三维分布。由此产生的三维温度场由两个波段之间的荧光强度之比决定,采用了一种新的三元模型,通过实验校准将温度与荧光比联系起来。在考虑激发光的反射、散射等采集误差以及重构和温度计算误差后,相对误差保持在6%以下。这项研究证明了TAVLIF技术在诊断燃烧过程中的三维温度场方面的成本效益(仅一个染料激光系统),准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional temperature diagnostics based on thermally-assisted volumetric laser-induced fluorescence

This research introduces a novel application of three-dimensional (3D) combustion thermometry through the thermally-assisted volumetric laser-induced fluorescence, namely the TAVLIF technique. The TAVLIF method is designed to provide quantitative 3D temperature diagnostics using a single dye-laser system, combining the advantage of tomographic imaging with the thermally-assisted LIF approach. The technique employs the A²Σ⁺X²Π (0, 0) band Q₁(7) transition to excite OH radicals within a controlled Bunsen burner flame. Following excitation, the fluorescence emitted from the resonant (0, 0) and non-resonant (1, 0) vibrational bands is captured sequentially by an intensified camera, facilitating the reconstruction of the 3D fluorescence field. Utilizing the axisymmetric and stable properties of the burner flame, we reconstruct the 3D distribution of fluorescence signals from both bands. The resulting 3D temperature field is determined by the ratio of fluorescence intensities between the two bands, employing a novel ternary model calibrated experimentally to relate temperature to fluorescence ratio. After accounting for acquisition errors such as reflection and scattering of excitation light, as well as reconstruction and temperature calculation errors, the relative error remains below 6%. This research demonstrates the cost-effectiveness (only one dye laser system), accuracy, and reliability of the TAVLIF technique in diagnosing 3D temperature fields within combustion processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics B
Applied Physics B 物理-光学
CiteScore
4.00
自引率
4.80%
发文量
202
审稿时长
3.0 months
期刊介绍: Features publication of experimental and theoretical investigations in applied physics Offers invited reviews in addition to regular papers Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field. In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信