使用PIV和LIF同时测量空气-水通道中的速度、氧浓度和变形界面位置

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Adharsh Shankaran, R. Jason Hearst
{"title":"使用PIV和LIF同时测量空气-水通道中的速度、氧浓度和变形界面位置","authors":"Adharsh Shankaran,&nbsp;R. Jason Hearst","doi":"10.1007/s00348-025-04017-w","DOIUrl":null,"url":null,"abstract":"<div><p>Oxygen transfer across a deforming air–water interface is studied using a synergy of particle image velocimetry and laser-induced fluorescence (LIF). Such approaches have previously been limited to flat interfaces. We develop simultaneous measurements of velocity fields, dissolved oxygen (DO) concentration fields, and interface positions for spatial and temporal tracking. The imaging process begins after the DO in the water has been chemically depleted and continues until the water is saturated with DO. The oxygen LIF intensity field is calibrated using measurements from an optical oxygen probe to ensure accurate conversion into physical unit (mg/L). A canonical air turbulent channel flow, with a centerline velocity of 6.6 m/s (Reynolds number based on channel height of 21,700), develops for more than 100 heights before the bottom boundary condition is changed from a solid wall to a water surface. This induces transient and wavy structures on the air–water interface and generates velocity fluctuations and vorticity on the water side, which drives DO transport. The spatial evolution of DO concentration reveals steep gradients near the interface that diminish with depth, while the temporal evolution shows a reduction in concentration differences between the bulk and interface from about 35% to less than 5% as the water saturates. Concentration fluctuations are lower near the interface compared to the bulk and diminish in time as the system approaches saturation. Turbulent scalar transport analysis shows high vertical flux near the interface, and this too changes as the bulk DO concentration evolves, emphasizing that the observed phenomena are transient and should be treated as such.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-04017-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous measurements of velocity, oxygen concentration, and deformed interface position in an air–water channel using PIV and LIF\",\"authors\":\"Adharsh Shankaran,&nbsp;R. Jason Hearst\",\"doi\":\"10.1007/s00348-025-04017-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oxygen transfer across a deforming air–water interface is studied using a synergy of particle image velocimetry and laser-induced fluorescence (LIF). Such approaches have previously been limited to flat interfaces. We develop simultaneous measurements of velocity fields, dissolved oxygen (DO) concentration fields, and interface positions for spatial and temporal tracking. The imaging process begins after the DO in the water has been chemically depleted and continues until the water is saturated with DO. The oxygen LIF intensity field is calibrated using measurements from an optical oxygen probe to ensure accurate conversion into physical unit (mg/L). A canonical air turbulent channel flow, with a centerline velocity of 6.6 m/s (Reynolds number based on channel height of 21,700), develops for more than 100 heights before the bottom boundary condition is changed from a solid wall to a water surface. This induces transient and wavy structures on the air–water interface and generates velocity fluctuations and vorticity on the water side, which drives DO transport. The spatial evolution of DO concentration reveals steep gradients near the interface that diminish with depth, while the temporal evolution shows a reduction in concentration differences between the bulk and interface from about 35% to less than 5% as the water saturates. Concentration fluctuations are lower near the interface compared to the bulk and diminish in time as the system approaches saturation. Turbulent scalar transport analysis shows high vertical flux near the interface, and this too changes as the bulk DO concentration evolves, emphasizing that the observed phenomena are transient and should be treated as such.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-025-04017-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-025-04017-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-04017-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用粒子图像测速和激光诱导荧光(LIF)的协同作用,研究了变形空气-水界面上的氧传递。这种方法以前仅限于平面接口。我们开发了速度场,溶解氧(DO)浓度场和界面位置的同步测量,用于空间和时间跟踪。成像过程在水中的DO被化学耗尽后开始,一直持续到水中DO饱和。使用光学氧探针校准氧LIF强度场,以确保准确转换为物理单位(mg/L)。典型的空气湍流通道流中心线速度为6.6 m/s(基于通道高度的雷诺数为21,700),在底部边界条件由固体壁面变为水面之前发展了100多个高度。这在空气-水界面上诱发了瞬态和波浪结构,并在水侧产生了速度波动和涡度,从而驱动了DO的输运。DO浓度的空间演化表现为在界面附近呈现陡峭的梯度,随深度减小,而时间演化表现为随着水饱和,体与界面之间的浓度差异从约35%减小到小于5%。界面附近的浓度波动比体低,当系统接近饱和时,浓度波动随时间减小。湍流标量输运分析表明,界面附近的垂直通量很高,并且随着整体DO浓度的变化而变化,强调观察到的现象是短暂的,应该这样对待。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous measurements of velocity, oxygen concentration, and deformed interface position in an air–water channel using PIV and LIF

Oxygen transfer across a deforming air–water interface is studied using a synergy of particle image velocimetry and laser-induced fluorescence (LIF). Such approaches have previously been limited to flat interfaces. We develop simultaneous measurements of velocity fields, dissolved oxygen (DO) concentration fields, and interface positions for spatial and temporal tracking. The imaging process begins after the DO in the water has been chemically depleted and continues until the water is saturated with DO. The oxygen LIF intensity field is calibrated using measurements from an optical oxygen probe to ensure accurate conversion into physical unit (mg/L). A canonical air turbulent channel flow, with a centerline velocity of 6.6 m/s (Reynolds number based on channel height of 21,700), develops for more than 100 heights before the bottom boundary condition is changed from a solid wall to a water surface. This induces transient and wavy structures on the air–water interface and generates velocity fluctuations and vorticity on the water side, which drives DO transport. The spatial evolution of DO concentration reveals steep gradients near the interface that diminish with depth, while the temporal evolution shows a reduction in concentration differences between the bulk and interface from about 35% to less than 5% as the water saturates. Concentration fluctuations are lower near the interface compared to the bulk and diminish in time as the system approaches saturation. Turbulent scalar transport analysis shows high vertical flux near the interface, and this too changes as the bulk DO concentration evolves, emphasizing that the observed phenomena are transient and should be treated as such.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信