介质材料微波特性的多元非线性回归

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hakim Sadou, Tarik Hacib, Yann Le Bihan, Olivier Meyer, Hulusi Acikgoz
{"title":"介质材料微波特性的多元非线性回归","authors":"Hakim Sadou,&nbsp;Tarik Hacib,&nbsp;Yann Le Bihan,&nbsp;Olivier Meyer,&nbsp;Hulusi Acikgoz","doi":"10.1007/s00339-025-08477-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we have introduced a new multivariate regression model to solve the inverse problem in microwave characterization of dielectric materials. The probe is an open-ended coaxial line, whereas the dielectric sample is taken at its end. The relative dielectric permittivity (<i>ε</i> = <i>ε'</i>-<i>jε''</i>) is calculated from the measurements of the probe admittance on a broad band frequency (<i>f</i> from 1 MHz to 1.8 GHz). In order to fit the regression coefficients of the Multiple Linear Regression (MLR) model (inverse problem), a data set is generated by solving the direct problem for the probe admittance (<i>Y</i>(<i>f</i>) = <i>G</i>(<i>f</i>) + <i>jB</i>(<i>f</i>)) using Finite Elements Method (FEM). Unfortunately, the MLR model with the original three descriptors (<i>f</i>, <i>G</i> and <i>B</i>) as <b><i>X</i></b> bloc and <i>ε'</i> or <i>ε''</i> as response (<b><i>Y</i></b> bloc) has given very bad results. In order to integrate the nonlinearity between inputs and output, more descriptors have been generated mathematically from the original ones (for example: 1<i>/f</i>, <i>B</i>/<i>f</i><sup>2</sup>, <i>fB</i>, 1/<i>B</i>, <i>G</i>/<i>f</i>, <i>f</i><sup>2</sup><i>G/B</i>, <i>fG</i><sup>2</sup><i>B</i>, <i>f</i><sup>2</sup><i>GB</i><sup>2</sup>, … etc.) using the extended <b><i>X</i></b> bloc method and the Multiple Non-Linear Regression (MNLR) model is created. In order to choose the most relevant or statistically significant descriptors, stepwise selection is adopted. Inversion results of experimental measurements on an ethanol sample have proved that the dielectric permittivity can be measured with excellent accuracy using MNLR as inversion tool.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple non-linear regression for microwaves characterization of dielectric materials\",\"authors\":\"Hakim Sadou,&nbsp;Tarik Hacib,&nbsp;Yann Le Bihan,&nbsp;Olivier Meyer,&nbsp;Hulusi Acikgoz\",\"doi\":\"10.1007/s00339-025-08477-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we have introduced a new multivariate regression model to solve the inverse problem in microwave characterization of dielectric materials. The probe is an open-ended coaxial line, whereas the dielectric sample is taken at its end. The relative dielectric permittivity (<i>ε</i> = <i>ε'</i>-<i>jε''</i>) is calculated from the measurements of the probe admittance on a broad band frequency (<i>f</i> from 1 MHz to 1.8 GHz). In order to fit the regression coefficients of the Multiple Linear Regression (MLR) model (inverse problem), a data set is generated by solving the direct problem for the probe admittance (<i>Y</i>(<i>f</i>) = <i>G</i>(<i>f</i>) + <i>jB</i>(<i>f</i>)) using Finite Elements Method (FEM). Unfortunately, the MLR model with the original three descriptors (<i>f</i>, <i>G</i> and <i>B</i>) as <b><i>X</i></b> bloc and <i>ε'</i> or <i>ε''</i> as response (<b><i>Y</i></b> bloc) has given very bad results. In order to integrate the nonlinearity between inputs and output, more descriptors have been generated mathematically from the original ones (for example: 1<i>/f</i>, <i>B</i>/<i>f</i><sup>2</sup>, <i>fB</i>, 1/<i>B</i>, <i>G</i>/<i>f</i>, <i>f</i><sup>2</sup><i>G/B</i>, <i>fG</i><sup>2</sup><i>B</i>, <i>f</i><sup>2</sup><i>GB</i><sup>2</sup>, … etc.) using the extended <b><i>X</i></b> bloc method and the Multiple Non-Linear Regression (MNLR) model is created. In order to choose the most relevant or statistically significant descriptors, stepwise selection is adopted. Inversion results of experimental measurements on an ethanol sample have proved that the dielectric permittivity can be measured with excellent accuracy using MNLR as inversion tool.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-025-08477-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08477-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们引入了一种新的多元回归模型来解决介电材料微波表征中的逆问题。探针是一个开放式的同轴线,而介电样品是在其末端。相对介电常数(ε = ε′-jε′”)是由在宽频带(f从1mhz到1.8 GHz)测量的探头导纳计算得到的。为了拟合多元线性回归(MLR)模型的回归系数(反问题),利用有限元法求解探针导纳(Y(f) = G(f) + jB(f))的正问题,生成数据集。不幸的是,原始的三个描述符(f, G和B)作为X组,ε‘或ε’作为响应(Y组)的MLR模型给出了非常糟糕的结果。为了整合输入和输出之间的非线性,使用扩展的X块方法从原始描述符(例如:1/f, B/f2, fB, 1/B, G/f, f2G/B, fG2B, f2GB2等)中生成了更多的数学描述符,并创建了多元非线性回归(MNLR)模型。为了选择最相关或统计显著的描述符,采用逐步选择。对乙醇样品的实验测量反演结果证明,用MNLR作为反演工具可以很好地测量介质介电常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple non-linear regression for microwaves characterization of dielectric materials

In this study, we have introduced a new multivariate regression model to solve the inverse problem in microwave characterization of dielectric materials. The probe is an open-ended coaxial line, whereas the dielectric sample is taken at its end. The relative dielectric permittivity (ε = ε'-jε'') is calculated from the measurements of the probe admittance on a broad band frequency (f from 1 MHz to 1.8 GHz). In order to fit the regression coefficients of the Multiple Linear Regression (MLR) model (inverse problem), a data set is generated by solving the direct problem for the probe admittance (Y(f) = G(f) + jB(f)) using Finite Elements Method (FEM). Unfortunately, the MLR model with the original three descriptors (f, G and B) as X bloc and ε' or ε'' as response (Y bloc) has given very bad results. In order to integrate the nonlinearity between inputs and output, more descriptors have been generated mathematically from the original ones (for example: 1/f, B/f2, fB, 1/B, G/f, f2G/B, fG2B, f2GB2, … etc.) using the extended X bloc method and the Multiple Non-Linear Regression (MNLR) model is created. In order to choose the most relevant or statistically significant descriptors, stepwise selection is adopted. Inversion results of experimental measurements on an ethanol sample have proved that the dielectric permittivity can be measured with excellent accuracy using MNLR as inversion tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信