增强3d打印PLA/木材复合材料的机械性能:一个元启发式和统计的角度

IF 2.4 3区 农林科学 Q1 FORESTRY
Nikhil Bharat, Vijay Kumar, D. Veeman, M. Vellaisamy
{"title":"增强3d打印PLA/木材复合材料的机械性能:一个元启发式和统计的角度","authors":"Nikhil Bharat,&nbsp;Vijay Kumar,&nbsp;D. Veeman,&nbsp;M. Vellaisamy","doi":"10.1007/s00107-025-02253-9","DOIUrl":null,"url":null,"abstract":"<div><p>The optimization of Fused Filament Fabrication (FFF) process parameters is crucial for improving the mechanical properties of PLA/wood composites, yet traditional statistical methods often fail to capture complex, nonlinear parameter interactions effectively. This study applies the Artificial Bee Colony (ABC) algorithm to optimize layer height, infill density, infill pattern, and raster orientation, comparing its performance with Analysis of Variance (ANOVA). PLA/wood composites were fabricated using an 80:20 ratio, and mechanical testing was conducted to evaluate compressive strength, hardness, and tensile strength. The ABC algorithm demonstrated higher prediction accuracy, with R<sup>2</sup> values of 0.96 for compressive strength, 0.93 for hardness, and 0.95 for tensile strength, significantly reducing prediction errors compared to ANOVA. Experimental validation confirmed an experimental compressive strength of 82.4 MPa, theoretical value of 83.78 MPa (error 1.69%), hardness of 83.54 Shore D, theoretical value of 83.60 Shore D (error 0.11%), and tensile strength of 59.7 MPa, theoretical value of 59.95 MPa (error 0.41%). The results demonstrate that ABC-based optimization significantly enhances process efficiency and mechanical performance, making it a promising tool for advanced additive manufacturing applications, including multi-material 3D printing and sustainable bio-composite fabrication.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mechanical properties of 3D-printed PLA/wood composites: a metaheuristic and statistical perspective\",\"authors\":\"Nikhil Bharat,&nbsp;Vijay Kumar,&nbsp;D. Veeman,&nbsp;M. Vellaisamy\",\"doi\":\"10.1007/s00107-025-02253-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The optimization of Fused Filament Fabrication (FFF) process parameters is crucial for improving the mechanical properties of PLA/wood composites, yet traditional statistical methods often fail to capture complex, nonlinear parameter interactions effectively. This study applies the Artificial Bee Colony (ABC) algorithm to optimize layer height, infill density, infill pattern, and raster orientation, comparing its performance with Analysis of Variance (ANOVA). PLA/wood composites were fabricated using an 80:20 ratio, and mechanical testing was conducted to evaluate compressive strength, hardness, and tensile strength. The ABC algorithm demonstrated higher prediction accuracy, with R<sup>2</sup> values of 0.96 for compressive strength, 0.93 for hardness, and 0.95 for tensile strength, significantly reducing prediction errors compared to ANOVA. Experimental validation confirmed an experimental compressive strength of 82.4 MPa, theoretical value of 83.78 MPa (error 1.69%), hardness of 83.54 Shore D, theoretical value of 83.60 Shore D (error 0.11%), and tensile strength of 59.7 MPa, theoretical value of 59.95 MPa (error 0.41%). The results demonstrate that ABC-based optimization significantly enhances process efficiency and mechanical performance, making it a promising tool for advanced additive manufacturing applications, including multi-material 3D printing and sustainable bio-composite fabrication.</p></div>\",\"PeriodicalId\":550,\"journal\":{\"name\":\"European Journal of Wood and Wood Products\",\"volume\":\"83 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Wood and Wood Products\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00107-025-02253-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02253-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

熔丝加工(FFF)工艺参数的优化对于提高PLA/wood复合材料的力学性能至关重要,但传统的统计方法往往无法有效地捕捉复杂的非线性参数相互作用。本研究采用人工蜂群(Artificial Bee Colony, ABC)算法优化图层高度、填充密度、填充模式和栅格方向,并与方差分析(ANOVA)进行比较。以80:20的比例制备PLA/wood复合材料,进行力学性能测试,评估其抗压强度、硬度和抗拉强度。ABC算法的预测精度较高,抗压强度、硬度和抗拉强度的R2值分别为0.96、0.93和0.95,与方差分析相比显著降低了预测误差。实验验证证实,实验抗压强度为82.4 MPa,理论值为83.78 MPa(误差1.69%),硬度为83.54邵氏D,理论值为83.60邵氏D(误差0.11%),抗拉强度为59.7 MPa,理论值为59.95 MPa(误差0.41%)。结果表明,基于abc的优化显著提高了工艺效率和机械性能,使其成为先进增材制造应用的一个有前途的工具,包括多材料3D打印和可持续生物复合材料制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing mechanical properties of 3D-printed PLA/wood composites: a metaheuristic and statistical perspective

The optimization of Fused Filament Fabrication (FFF) process parameters is crucial for improving the mechanical properties of PLA/wood composites, yet traditional statistical methods often fail to capture complex, nonlinear parameter interactions effectively. This study applies the Artificial Bee Colony (ABC) algorithm to optimize layer height, infill density, infill pattern, and raster orientation, comparing its performance with Analysis of Variance (ANOVA). PLA/wood composites were fabricated using an 80:20 ratio, and mechanical testing was conducted to evaluate compressive strength, hardness, and tensile strength. The ABC algorithm demonstrated higher prediction accuracy, with R2 values of 0.96 for compressive strength, 0.93 for hardness, and 0.95 for tensile strength, significantly reducing prediction errors compared to ANOVA. Experimental validation confirmed an experimental compressive strength of 82.4 MPa, theoretical value of 83.78 MPa (error 1.69%), hardness of 83.54 Shore D, theoretical value of 83.60 Shore D (error 0.11%), and tensile strength of 59.7 MPa, theoretical value of 59.95 MPa (error 0.41%). The results demonstrate that ABC-based optimization significantly enhances process efficiency and mechanical performance, making it a promising tool for advanced additive manufacturing applications, including multi-material 3D printing and sustainable bio-composite fabrication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Wood and Wood Products
European Journal of Wood and Wood Products 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
3.80%
发文量
124
审稿时长
6.0 months
期刊介绍: European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets. European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信