{"title":"基于铁负荷相关基因的伤口愈合关键靶点和免疫环境鉴定","authors":"Yinbo Peng, Juxiang Sheng, Tiantian Liu, Ruizhe He, Peng Xu","doi":"10.1007/s00403-025-04140-y","DOIUrl":null,"url":null,"abstract":"<div><p>Wound healing (WH) poses a significant socio-economic burden due to its high incidence and recurrence rates. Iron overload (IO) could be a factor leading to delayed WH. This study thus analyzed IO-related genes (IORGs) in WH, offering possibilities for developing new therapeutic strategies. Differential gene expression (DEGs) analysis was conducted between the WH group and intact skin (IS) group, intersected with IORGs to obtain differentially expressed IORGs (DE-IORGs). Functional enrichment analysis and potential drug screening were performed on DE-IORGs. A protein–protein interaction (PPI) network of DE-IORGs was constructed, and hub genes were identified using CytoHubba and MCODE methods. ROC curves of hub genes were plotted, and their expression levels in WH and IS groups as well as inter-gene correlations were analyzed. Additionally, immune infiltration variances in WH and IS groups, along with miRNA and TFs of hub genes, were examined. Finally, the effect of EGFR on skin wound healing was verified by scratch healing assay. 39 DE-IORGs were predominantly enriched in signaling pathways like HIF-1 signaling pathway and Th17 cell differentiation. Potential drugs for treating WH (e.g., felbamate, SA-94315, GANT-58, rucaparib) were identified. Three hub genes related to IO in WH were pinpointed (HIF1A, CDKN2A, EGFR) with diagnostic value. Immune infiltration analysis showed higher levels of immune cells like endothelial cells and macrophages in the WH group. Additionally, 55 miRNAs (e.g., hsa-mir-200a-3p, hsa-mir-218-5p) and 2 TFs (L3MBTL2, ZNF76) regulating the three hub genes were predicted. Cell experiments showed that EGFR could promote skin wound healing. The study suggested HIF1A, CDKN2A, and EGFR as potential diagnostic biomarkers for effective WH diagnosis, offering new insights into identifying potenti1al therapeutic targets for WH treatment.</p></div>","PeriodicalId":8203,"journal":{"name":"Archives of Dermatological Research","volume":"317 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying key targets and immune environment in wound healing based on iron overload-related genes\",\"authors\":\"Yinbo Peng, Juxiang Sheng, Tiantian Liu, Ruizhe He, Peng Xu\",\"doi\":\"10.1007/s00403-025-04140-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wound healing (WH) poses a significant socio-economic burden due to its high incidence and recurrence rates. Iron overload (IO) could be a factor leading to delayed WH. This study thus analyzed IO-related genes (IORGs) in WH, offering possibilities for developing new therapeutic strategies. Differential gene expression (DEGs) analysis was conducted between the WH group and intact skin (IS) group, intersected with IORGs to obtain differentially expressed IORGs (DE-IORGs). Functional enrichment analysis and potential drug screening were performed on DE-IORGs. A protein–protein interaction (PPI) network of DE-IORGs was constructed, and hub genes were identified using CytoHubba and MCODE methods. ROC curves of hub genes were plotted, and their expression levels in WH and IS groups as well as inter-gene correlations were analyzed. Additionally, immune infiltration variances in WH and IS groups, along with miRNA and TFs of hub genes, were examined. Finally, the effect of EGFR on skin wound healing was verified by scratch healing assay. 39 DE-IORGs were predominantly enriched in signaling pathways like HIF-1 signaling pathway and Th17 cell differentiation. Potential drugs for treating WH (e.g., felbamate, SA-94315, GANT-58, rucaparib) were identified. Three hub genes related to IO in WH were pinpointed (HIF1A, CDKN2A, EGFR) with diagnostic value. Immune infiltration analysis showed higher levels of immune cells like endothelial cells and macrophages in the WH group. Additionally, 55 miRNAs (e.g., hsa-mir-200a-3p, hsa-mir-218-5p) and 2 TFs (L3MBTL2, ZNF76) regulating the three hub genes were predicted. Cell experiments showed that EGFR could promote skin wound healing. The study suggested HIF1A, CDKN2A, and EGFR as potential diagnostic biomarkers for effective WH diagnosis, offering new insights into identifying potenti1al therapeutic targets for WH treatment.</p></div>\",\"PeriodicalId\":8203,\"journal\":{\"name\":\"Archives of Dermatological Research\",\"volume\":\"317 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Dermatological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00403-025-04140-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Dermatological Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00403-025-04140-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Identifying key targets and immune environment in wound healing based on iron overload-related genes
Wound healing (WH) poses a significant socio-economic burden due to its high incidence and recurrence rates. Iron overload (IO) could be a factor leading to delayed WH. This study thus analyzed IO-related genes (IORGs) in WH, offering possibilities for developing new therapeutic strategies. Differential gene expression (DEGs) analysis was conducted between the WH group and intact skin (IS) group, intersected with IORGs to obtain differentially expressed IORGs (DE-IORGs). Functional enrichment analysis and potential drug screening were performed on DE-IORGs. A protein–protein interaction (PPI) network of DE-IORGs was constructed, and hub genes were identified using CytoHubba and MCODE methods. ROC curves of hub genes were plotted, and their expression levels in WH and IS groups as well as inter-gene correlations were analyzed. Additionally, immune infiltration variances in WH and IS groups, along with miRNA and TFs of hub genes, were examined. Finally, the effect of EGFR on skin wound healing was verified by scratch healing assay. 39 DE-IORGs were predominantly enriched in signaling pathways like HIF-1 signaling pathway and Th17 cell differentiation. Potential drugs for treating WH (e.g., felbamate, SA-94315, GANT-58, rucaparib) were identified. Three hub genes related to IO in WH were pinpointed (HIF1A, CDKN2A, EGFR) with diagnostic value. Immune infiltration analysis showed higher levels of immune cells like endothelial cells and macrophages in the WH group. Additionally, 55 miRNAs (e.g., hsa-mir-200a-3p, hsa-mir-218-5p) and 2 TFs (L3MBTL2, ZNF76) regulating the three hub genes were predicted. Cell experiments showed that EGFR could promote skin wound healing. The study suggested HIF1A, CDKN2A, and EGFR as potential diagnostic biomarkers for effective WH diagnosis, offering new insights into identifying potenti1al therapeutic targets for WH treatment.
期刊介绍:
Archives of Dermatological Research is a highly rated international journal that publishes original contributions in the field of experimental dermatology, including papers on biochemistry, morphology and immunology of the skin. The journal is among the few not related to dermatological associations or belonging to respective societies which guarantees complete independence. This English-language journal also offers a platform for review articles in areas of interest for dermatologists and for publication of innovative clinical trials.