3维和4维Keller-Segel系统的I-Log型爆破构造

IF 2.4 1区 数学 Q1 MATHEMATICS
Van Tien Nguyen, Nejla Nouaili, Hatem Zaag
{"title":"3维和4维Keller-Segel系统的I-Log型爆破构造","authors":"Van Tien Nguyen,&nbsp;Nejla Nouaili,&nbsp;Hatem Zaag","doi":"10.1007/s40818-025-00202-6","DOIUrl":null,"url":null,"abstract":"<div><p>We construct finite time blowup solutions to the parabolic-elliptic Keller-Segel system </p><div><div><span>$$\\partial_t u = \\Delta u - \\nabla \\cdot (u \\nabla \\mathcal{K}_u), \\quad -\\Delta \\mathcal{K}_u = u \\quad \\text{in}\\;\\; \\mathbb{R}^d,\\; d = 3,4,$$</span></div></div><p> and derive the final blowup profile </p><div><div><span>$$u(r,T) \\sim c_d \\frac{|\\log r|^\\frac{d-2}{d}}{r^2} \\quad \\text{as}\\;\\; r \\to 0, \\;\\; c_d &gt; 0.$$</span></div></div><p> To our knowledge this provides a new blowup solution for the Keller-Segel system, rigorously answering a question by Brenner et al. in [Brenner, Nonlinearity <b>12</b>, 1999].</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Type I-Log Blowup for the Keller-Segel System in Dimensions 3 and 4\",\"authors\":\"Van Tien Nguyen,&nbsp;Nejla Nouaili,&nbsp;Hatem Zaag\",\"doi\":\"10.1007/s40818-025-00202-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct finite time blowup solutions to the parabolic-elliptic Keller-Segel system </p><div><div><span>$$\\\\partial_t u = \\\\Delta u - \\\\nabla \\\\cdot (u \\\\nabla \\\\mathcal{K}_u), \\\\quad -\\\\Delta \\\\mathcal{K}_u = u \\\\quad \\\\text{in}\\\\;\\\\; \\\\mathbb{R}^d,\\\\; d = 3,4,$$</span></div></div><p> and derive the final blowup profile </p><div><div><span>$$u(r,T) \\\\sim c_d \\\\frac{|\\\\log r|^\\\\frac{d-2}{d}}{r^2} \\\\quad \\\\text{as}\\\\;\\\\; r \\\\to 0, \\\\;\\\\; c_d &gt; 0.$$</span></div></div><p> To our knowledge this provides a new blowup solution for the Keller-Segel system, rigorously answering a question by Brenner et al. in [Brenner, Nonlinearity <b>12</b>, 1999].</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-025-00202-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00202-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了抛物-椭圆Keller-Segel系统$$\partial_t u = \Delta u - \nabla \cdot (u \nabla \mathcal{K}_u), \quad -\Delta \mathcal{K}_u = u \quad \text{in}\;\; \mathbb{R}^d,\; d = 3,4,$$的有限时间爆破解,并推导出最终爆破剖面$$u(r,T) \sim c_d \frac{|\log r|^\frac{d-2}{d}}{r^2} \quad \text{as}\;\; r \to 0, \;\; c_d > 0.$$据我们所知,这为Keller-Segel系统提供了一个新的爆破解,严格地回答了Brenner等人在[Brenner,非线性12,1999]中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Type I-Log Blowup for the Keller-Segel System in Dimensions 3 and 4

We construct finite time blowup solutions to the parabolic-elliptic Keller-Segel system

$$\partial_t u = \Delta u - \nabla \cdot (u \nabla \mathcal{K}_u), \quad -\Delta \mathcal{K}_u = u \quad \text{in}\;\; \mathbb{R}^d,\; d = 3,4,$$

and derive the final blowup profile

$$u(r,T) \sim c_d \frac{|\log r|^\frac{d-2}{d}}{r^2} \quad \text{as}\;\; r \to 0, \;\; c_d > 0.$$

To our knowledge this provides a new blowup solution for the Keller-Segel system, rigorously answering a question by Brenner et al. in [Brenner, Nonlinearity 12, 1999].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信