{"title":"3维和4维Keller-Segel系统的I-Log型爆破构造","authors":"Van Tien Nguyen, Nejla Nouaili, Hatem Zaag","doi":"10.1007/s40818-025-00202-6","DOIUrl":null,"url":null,"abstract":"<div><p>We construct finite time blowup solutions to the parabolic-elliptic Keller-Segel system </p><div><div><span>$$\\partial_t u = \\Delta u - \\nabla \\cdot (u \\nabla \\mathcal{K}_u), \\quad -\\Delta \\mathcal{K}_u = u \\quad \\text{in}\\;\\; \\mathbb{R}^d,\\; d = 3,4,$$</span></div></div><p> and derive the final blowup profile </p><div><div><span>$$u(r,T) \\sim c_d \\frac{|\\log r|^\\frac{d-2}{d}}{r^2} \\quad \\text{as}\\;\\; r \\to 0, \\;\\; c_d > 0.$$</span></div></div><p> To our knowledge this provides a new blowup solution for the Keller-Segel system, rigorously answering a question by Brenner et al. in [Brenner, Nonlinearity <b>12</b>, 1999].</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Type I-Log Blowup for the Keller-Segel System in Dimensions 3 and 4\",\"authors\":\"Van Tien Nguyen, Nejla Nouaili, Hatem Zaag\",\"doi\":\"10.1007/s40818-025-00202-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct finite time blowup solutions to the parabolic-elliptic Keller-Segel system </p><div><div><span>$$\\\\partial_t u = \\\\Delta u - \\\\nabla \\\\cdot (u \\\\nabla \\\\mathcal{K}_u), \\\\quad -\\\\Delta \\\\mathcal{K}_u = u \\\\quad \\\\text{in}\\\\;\\\\; \\\\mathbb{R}^d,\\\\; d = 3,4,$$</span></div></div><p> and derive the final blowup profile </p><div><div><span>$$u(r,T) \\\\sim c_d \\\\frac{|\\\\log r|^\\\\frac{d-2}{d}}{r^2} \\\\quad \\\\text{as}\\\\;\\\\; r \\\\to 0, \\\\;\\\\; c_d > 0.$$</span></div></div><p> To our knowledge this provides a new blowup solution for the Keller-Segel system, rigorously answering a question by Brenner et al. in [Brenner, Nonlinearity <b>12</b>, 1999].</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-025-00202-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00202-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们构造了抛物-椭圆Keller-Segel系统$$\partial_t u = \Delta u - \nabla \cdot (u \nabla \mathcal{K}_u), \quad -\Delta \mathcal{K}_u = u \quad \text{in}\;\; \mathbb{R}^d,\; d = 3,4,$$的有限时间爆破解,并推导出最终爆破剖面$$u(r,T) \sim c_d \frac{|\log r|^\frac{d-2}{d}}{r^2} \quad \text{as}\;\; r \to 0, \;\; c_d > 0.$$据我们所知,这为Keller-Segel系统提供了一个新的爆破解,严格地回答了Brenner等人在[Brenner,非线性12,1999]中的问题。
To our knowledge this provides a new blowup solution for the Keller-Segel system, rigorously answering a question by Brenner et al. in [Brenner, Nonlinearity 12, 1999].