Narendra Deconda;Srikrishna Bhashyam;Nambi Seshadri;R. David Koilpillai
{"title":"降低开销的低复杂度过采样OTFS接收机","authors":"Narendra Deconda;Srikrishna Bhashyam;Nambi Seshadri;R. David Koilpillai","doi":"10.1109/OJCOMS.2025.3540356","DOIUrl":null,"url":null,"abstract":"Orthogonal Time Frequency Space (OTFS) modulation enables reliable communication in fast time-varying, frequency-selective channels. It is a delay-Doppler (DD) domain modulation that models the information symbols and the channel in the DD domain. This paper considers a pulse-shaped OTFS system with oversampling at the receiver. To mitigate Inter-Frame and Inter-Block Interference, we propose a Reduced Cyclic Prefix (RCP) and Reduced Cyclic Suffix (RCS) frame structure for the OTFS systems that need significantly less overhead than the existing Zero-padded OTFS frame structure. At the receiver, we propose a Finite Impulse Response filter-based Noise Whitening and an iterative delay-time domain Maximal Ratio Combining equalizer that has low complexity and employs oversampling. Through Monte Carlo simulations, we show improved system error performance with oversampling and excess bandwidth. The proposed equalizer provides a significant complexity reduction compared to the existing Message-passing equalizer for a minimal degradation in error performance. We then simulate a Matched Filter Bound (MFB) for OTFS systems. The proposed equalizer is within 3 dB of the MFB performance at an error rate of 10-4.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"1-1"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10879026","citationCount":"0","resultStr":"{\"title\":\"Low-Complexity Oversampled OTFS Receivers With Reduced Overhead\",\"authors\":\"Narendra Deconda;Srikrishna Bhashyam;Nambi Seshadri;R. David Koilpillai\",\"doi\":\"10.1109/OJCOMS.2025.3540356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal Time Frequency Space (OTFS) modulation enables reliable communication in fast time-varying, frequency-selective channels. It is a delay-Doppler (DD) domain modulation that models the information symbols and the channel in the DD domain. This paper considers a pulse-shaped OTFS system with oversampling at the receiver. To mitigate Inter-Frame and Inter-Block Interference, we propose a Reduced Cyclic Prefix (RCP) and Reduced Cyclic Suffix (RCS) frame structure for the OTFS systems that need significantly less overhead than the existing Zero-padded OTFS frame structure. At the receiver, we propose a Finite Impulse Response filter-based Noise Whitening and an iterative delay-time domain Maximal Ratio Combining equalizer that has low complexity and employs oversampling. Through Monte Carlo simulations, we show improved system error performance with oversampling and excess bandwidth. The proposed equalizer provides a significant complexity reduction compared to the existing Message-passing equalizer for a minimal degradation in error performance. We then simulate a Matched Filter Bound (MFB) for OTFS systems. The proposed equalizer is within 3 dB of the MFB performance at an error rate of 10-4.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"1-1\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10879026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10879026/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10879026/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Low-Complexity Oversampled OTFS Receivers With Reduced Overhead
Orthogonal Time Frequency Space (OTFS) modulation enables reliable communication in fast time-varying, frequency-selective channels. It is a delay-Doppler (DD) domain modulation that models the information symbols and the channel in the DD domain. This paper considers a pulse-shaped OTFS system with oversampling at the receiver. To mitigate Inter-Frame and Inter-Block Interference, we propose a Reduced Cyclic Prefix (RCP) and Reduced Cyclic Suffix (RCS) frame structure for the OTFS systems that need significantly less overhead than the existing Zero-padded OTFS frame structure. At the receiver, we propose a Finite Impulse Response filter-based Noise Whitening and an iterative delay-time domain Maximal Ratio Combining equalizer that has low complexity and employs oversampling. Through Monte Carlo simulations, we show improved system error performance with oversampling and excess bandwidth. The proposed equalizer provides a significant complexity reduction compared to the existing Message-passing equalizer for a minimal degradation in error performance. We then simulate a Matched Filter Bound (MFB) for OTFS systems. The proposed equalizer is within 3 dB of the MFB performance at an error rate of 10-4.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.