QuArch:计算机体系结构中AI智能体的问答数据集

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shvetank Prakash;Andrew Cheng;Jason Yik;Arya Tschand;Radhika Ghosal;Ikechukwu Uchendu;Jessica Quaye;Jeffrey Ma;Shreyas Grampurohit;Sofia Giannuzzi;Arnav Balyan;Fin Amin;Aadya Pipersenia;Yash Choudhary;Ankita Nayak;Amir Yazdanbakhsh;Vijay Janapa Reddi
{"title":"QuArch:计算机体系结构中AI智能体的问答数据集","authors":"Shvetank Prakash;Andrew Cheng;Jason Yik;Arya Tschand;Radhika Ghosal;Ikechukwu Uchendu;Jessica Quaye;Jeffrey Ma;Shreyas Grampurohit;Sofia Giannuzzi;Arnav Balyan;Fin Amin;Aadya Pipersenia;Yash Choudhary;Ankita Nayak;Amir Yazdanbakhsh;Vijay Janapa Reddi","doi":"10.1109/LCA.2025.3541961","DOIUrl":null,"url":null,"abstract":"We introduce QuArch, a dataset of 1500 human-validated question-answer pairs designed to evaluate and enhance language models’ understanding of computer architecture. The dataset covers areas including processor design, memory systems, and performance optimization. Our analysis highlights a significant performance gap: the best closed-source model achieves 84% accuracy, while the top small open-source model reaches 72%. We observe notable struggles on QAs regarding memory systems and interconnection networks. Fine-tuning with QuArch improves small model accuracy by up to 8%, establishing a foundation for advancing AI-driven computer architecture research. The dataset and the leaderboard are accessible at <uri>https://quarch.ai/</uri>.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"105-108"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QuArch: A Question-Answering Dataset for AI Agents in Computer Architecture\",\"authors\":\"Shvetank Prakash;Andrew Cheng;Jason Yik;Arya Tschand;Radhika Ghosal;Ikechukwu Uchendu;Jessica Quaye;Jeffrey Ma;Shreyas Grampurohit;Sofia Giannuzzi;Arnav Balyan;Fin Amin;Aadya Pipersenia;Yash Choudhary;Ankita Nayak;Amir Yazdanbakhsh;Vijay Janapa Reddi\",\"doi\":\"10.1109/LCA.2025.3541961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce QuArch, a dataset of 1500 human-validated question-answer pairs designed to evaluate and enhance language models’ understanding of computer architecture. The dataset covers areas including processor design, memory systems, and performance optimization. Our analysis highlights a significant performance gap: the best closed-source model achieves 84% accuracy, while the top small open-source model reaches 72%. We observe notable struggles on QAs regarding memory systems and interconnection networks. Fine-tuning with QuArch improves small model accuracy by up to 8%, establishing a foundation for advancing AI-driven computer architecture research. The dataset and the leaderboard are accessible at <uri>https://quarch.ai/</uri>.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"24 1\",\"pages\":\"105-108\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904448/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904448/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍QuArch,这是一个由1500对人类验证的问答对组成的数据集,旨在评估和增强语言模型对计算机体系结构的理解。该数据集涵盖的领域包括处理器设计、内存系统和性能优化。我们的分析突出了一个显著的性能差距:最好的闭源模型达到了84%的准确率,而最好的小开源模型达到了72%。我们观察到关于存储系统和互连网络的QAs的显著斗争。QuArch的微调将小模型的精度提高了8%,为推进人工智能驱动的计算机架构研究奠定了基础。数据集和排行榜可访问https://quarch.ai/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QuArch: A Question-Answering Dataset for AI Agents in Computer Architecture
We introduce QuArch, a dataset of 1500 human-validated question-answer pairs designed to evaluate and enhance language models’ understanding of computer architecture. The dataset covers areas including processor design, memory systems, and performance optimization. Our analysis highlights a significant performance gap: the best closed-source model achieves 84% accuracy, while the top small open-source model reaches 72%. We observe notable struggles on QAs regarding memory systems and interconnection networks. Fine-tuning with QuArch improves small model accuracy by up to 8%, establishing a foundation for advancing AI-driven computer architecture research. The dataset and the leaderboard are accessible at https://quarch.ai/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信