Siyao Chen , Hongqiu Wei , Cheng Lin , Hanxing Zhao , Chaoqun Dong , Xue Wan
{"title":"智能电子刺激响应材料的最新进展","authors":"Siyao Chen , Hongqiu Wei , Cheng Lin , Hanxing Zhao , Chaoqun Dong , Xue Wan","doi":"10.1016/j.mtelec.2025.100152","DOIUrl":null,"url":null,"abstract":"<div><div>Stimuli-responsive materials, which undergo variations in their physical or chemical properties in response to external stimuli, have recently drawn increasing attention for their integration into next-generation intelligent electronics. Their capabilities to adjust shapes and properties, combined with advanced manufacturing technologies, are paving the way toward innovative electronic devices with unprecedented levels of adaptability and multifunctionality. In this review, we summarize recent progress in stimuli-responsive materials for intelligent electronic devices. We highlight various material design strategies, their corresponding stimuli-triggered responses, and applications in sensors, actuators, and energy systems. Finally, we discuss current challenges focusing on multi-functional, integrated, and reconfigurable electronics and outline future trends that inspire the next-generation devices.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"12 ","pages":"Article 100152"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in stimuli-responsive materials for intelligent electronics\",\"authors\":\"Siyao Chen , Hongqiu Wei , Cheng Lin , Hanxing Zhao , Chaoqun Dong , Xue Wan\",\"doi\":\"10.1016/j.mtelec.2025.100152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stimuli-responsive materials, which undergo variations in their physical or chemical properties in response to external stimuli, have recently drawn increasing attention for their integration into next-generation intelligent electronics. Their capabilities to adjust shapes and properties, combined with advanced manufacturing technologies, are paving the way toward innovative electronic devices with unprecedented levels of adaptability and multifunctionality. In this review, we summarize recent progress in stimuli-responsive materials for intelligent electronic devices. We highlight various material design strategies, their corresponding stimuli-triggered responses, and applications in sensors, actuators, and energy systems. Finally, we discuss current challenges focusing on multi-functional, integrated, and reconfigurable electronics and outline future trends that inspire the next-generation devices.</div></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":\"12 \",\"pages\":\"Article 100152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277294942500018X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294942500018X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in stimuli-responsive materials for intelligent electronics
Stimuli-responsive materials, which undergo variations in their physical or chemical properties in response to external stimuli, have recently drawn increasing attention for their integration into next-generation intelligent electronics. Their capabilities to adjust shapes and properties, combined with advanced manufacturing technologies, are paving the way toward innovative electronic devices with unprecedented levels of adaptability and multifunctionality. In this review, we summarize recent progress in stimuli-responsive materials for intelligent electronic devices. We highlight various material design strategies, their corresponding stimuli-triggered responses, and applications in sensors, actuators, and energy systems. Finally, we discuss current challenges focusing on multi-functional, integrated, and reconfigurable electronics and outline future trends that inspire the next-generation devices.