Linghui Zeng , Jiafan Ren , Zhongqi Wang , Han Li , Xing Chen , Shenghua Fu
{"title":"爆炸驱动下环氧丙烷液滴/铝粉的分散及二次爆炸模型:考虑初始流场","authors":"Linghui Zeng , Jiafan Ren , Zhongqi Wang , Han Li , Xing Chen , Shenghua Fu","doi":"10.1016/j.powtec.2025.121045","DOIUrl":null,"url":null,"abstract":"<div><div>The dispersion and explosion characteristics of multiphase particles under explosion-driving hold significant importance for safety design and accident prevention in the chemical industry field. In order to solve the problems of discontinuity, incompleteness of flow field conditions and significant near-field errors in the existing numerical models, a dispersion and secondary explosion model of propylene oxide droplets/ aluminum powder under explosion driving is built. The model performs continuous computations for the four stages of initial dispersion, cloud development, concentration distribution, and secondary explosion. The model considers the initial flow field conditions, effectively reducing the near-field computational error to within 10 %. The dispersion and explosion processes of mixed fuel under three conditions (static, with wind speed and with falling speed) are studied through experiments and numerical models. The results show that under the initial wind speed, the dispersion radius of the downwind area extends by 16.8 %. The burnout rate increases by 15.0 %, and the peak overpressure of the secondary explosion rises by 4.2 %. Under the initial falling speed effect, the concentration distribution of the fuel cloud becomes more uniform. The proportion of the gas phase increases. It has been verified that the velocity change of the initial flow field can influence the stripping and evaporation effects of droplets, thereby strengthening the explosive properties of the cloud.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"459 ","pages":"Article 121045"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion and secondary explosion model of propylene oxide droplets/aluminum powder under explosion driving: Considering the initial flow field\",\"authors\":\"Linghui Zeng , Jiafan Ren , Zhongqi Wang , Han Li , Xing Chen , Shenghua Fu\",\"doi\":\"10.1016/j.powtec.2025.121045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dispersion and explosion characteristics of multiphase particles under explosion-driving hold significant importance for safety design and accident prevention in the chemical industry field. In order to solve the problems of discontinuity, incompleteness of flow field conditions and significant near-field errors in the existing numerical models, a dispersion and secondary explosion model of propylene oxide droplets/ aluminum powder under explosion driving is built. The model performs continuous computations for the four stages of initial dispersion, cloud development, concentration distribution, and secondary explosion. The model considers the initial flow field conditions, effectively reducing the near-field computational error to within 10 %. The dispersion and explosion processes of mixed fuel under three conditions (static, with wind speed and with falling speed) are studied through experiments and numerical models. The results show that under the initial wind speed, the dispersion radius of the downwind area extends by 16.8 %. The burnout rate increases by 15.0 %, and the peak overpressure of the secondary explosion rises by 4.2 %. Under the initial falling speed effect, the concentration distribution of the fuel cloud becomes more uniform. The proportion of the gas phase increases. It has been verified that the velocity change of the initial flow field can influence the stripping and evaporation effects of droplets, thereby strengthening the explosive properties of the cloud.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"459 \",\"pages\":\"Article 121045\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591025004401\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025004401","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dispersion and secondary explosion model of propylene oxide droplets/aluminum powder under explosion driving: Considering the initial flow field
The dispersion and explosion characteristics of multiphase particles under explosion-driving hold significant importance for safety design and accident prevention in the chemical industry field. In order to solve the problems of discontinuity, incompleteness of flow field conditions and significant near-field errors in the existing numerical models, a dispersion and secondary explosion model of propylene oxide droplets/ aluminum powder under explosion driving is built. The model performs continuous computations for the four stages of initial dispersion, cloud development, concentration distribution, and secondary explosion. The model considers the initial flow field conditions, effectively reducing the near-field computational error to within 10 %. The dispersion and explosion processes of mixed fuel under three conditions (static, with wind speed and with falling speed) are studied through experiments and numerical models. The results show that under the initial wind speed, the dispersion radius of the downwind area extends by 16.8 %. The burnout rate increases by 15.0 %, and the peak overpressure of the secondary explosion rises by 4.2 %. Under the initial falling speed effect, the concentration distribution of the fuel cloud becomes more uniform. The proportion of the gas phase increases. It has been verified that the velocity change of the initial flow field can influence the stripping and evaporation effects of droplets, thereby strengthening the explosive properties of the cloud.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.