Guoyan Ao , Ruifang Liu , Jinjiang Yuan , C.T. Ng , T.C.E. Cheng
{"title":"图的k因子和生成树的充分条件","authors":"Guoyan Ao , Ruifang Liu , Jinjiang Yuan , C.T. Ng , T.C.E. Cheng","doi":"10.1016/j.dam.2025.04.015","DOIUrl":null,"url":null,"abstract":"<div><div>For any integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></math></span> a graph <span><math><mi>G</mi></math></span> has a <span><math><mi>k</mi></math></span>-factor if it contains a <span><math><mi>k</mi></math></span>-regular spanning subgraph. In this paper, we present a sufficient condition in terms of the number of <span><math><mi>r</mi></math></span>-cliques to guarantee the existence of a <span><math><mi>k</mi></math></span>-factor in a graph with minimum degree at least <span><math><mi>δ</mi></math></span>, which improves the sufficient condition of O (2021) based on the number of edges. For any integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn><mo>,</mo></mrow></math></span> a spanning <span><math><mi>k</mi></math></span>-tree of a connected graph <span><math><mi>G</mi></math></span> is a spanning tree in which every vertex has degree at most <span><math><mi>k</mi></math></span>. Motivated by the technique of Li and Ning (2016), we present a tight spectral condition for an <span><math><mi>m</mi></math></span>-connected graph to have a spanning <span><math><mi>k</mi></math></span>-tree, which extends the result of Fan et al. (2022) from <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math></span> to general <span><math><mi>m</mi></math></span>. Let <span><math><mi>T</mi></math></span> be a spanning tree of a connected graph. The leaf degree of <span><math><mi>T</mi></math></span> is the maximum number of leaves adjacent to <span><math><mi>v</mi></math></span> in <span><math><mi>T</mi></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. We provide a tight spectral condition for the existence of a spanning tree with leaf degree at most <span><math><mi>k</mi></math></span> in a connected graph with minimum degree <span><math><mi>δ</mi></math></span>, where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span> is an integer.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 124-135"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient conditions for k-factors and spanning trees of graphs\",\"authors\":\"Guoyan Ao , Ruifang Liu , Jinjiang Yuan , C.T. Ng , T.C.E. Cheng\",\"doi\":\"10.1016/j.dam.2025.04.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></math></span> a graph <span><math><mi>G</mi></math></span> has a <span><math><mi>k</mi></math></span>-factor if it contains a <span><math><mi>k</mi></math></span>-regular spanning subgraph. In this paper, we present a sufficient condition in terms of the number of <span><math><mi>r</mi></math></span>-cliques to guarantee the existence of a <span><math><mi>k</mi></math></span>-factor in a graph with minimum degree at least <span><math><mi>δ</mi></math></span>, which improves the sufficient condition of O (2021) based on the number of edges. For any integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn><mo>,</mo></mrow></math></span> a spanning <span><math><mi>k</mi></math></span>-tree of a connected graph <span><math><mi>G</mi></math></span> is a spanning tree in which every vertex has degree at most <span><math><mi>k</mi></math></span>. Motivated by the technique of Li and Ning (2016), we present a tight spectral condition for an <span><math><mi>m</mi></math></span>-connected graph to have a spanning <span><math><mi>k</mi></math></span>-tree, which extends the result of Fan et al. (2022) from <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math></span> to general <span><math><mi>m</mi></math></span>. Let <span><math><mi>T</mi></math></span> be a spanning tree of a connected graph. The leaf degree of <span><math><mi>T</mi></math></span> is the maximum number of leaves adjacent to <span><math><mi>v</mi></math></span> in <span><math><mi>T</mi></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. We provide a tight spectral condition for the existence of a spanning tree with leaf degree at most <span><math><mi>k</mi></math></span> in a connected graph with minimum degree <span><math><mi>δ</mi></math></span>, where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span> is an integer.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 124-135\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001878\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001878","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
对于任意整数k≥1,如果图G包含k正则生成子图,则它有k因子。本文用r-团的个数给出了最小度至少为δ的图中存在k因子的充分条件,改进了基于边数的O(2021)的充分条件。对于任意整数k≥2,连通图G的生成k树是一棵每个顶点最多有k度的生成树。受Li and Ning(2016)的技术启发,我们提出了m连通图具有生成k树的紧谱条件,将Fan et al.(2022)的结果从m=1推广到一般m。设T为连通图的生成树。T的叶度是任意v∈v (T)在T中与v相邻的叶的最大个数。给出了最小度为δ的连通图中叶度最大为k的生成树存在的紧谱条件,其中k≥1为整数。
Sufficient conditions for k-factors and spanning trees of graphs
For any integer a graph has a -factor if it contains a -regular spanning subgraph. In this paper, we present a sufficient condition in terms of the number of -cliques to guarantee the existence of a -factor in a graph with minimum degree at least , which improves the sufficient condition of O (2021) based on the number of edges. For any integer a spanning -tree of a connected graph is a spanning tree in which every vertex has degree at most . Motivated by the technique of Li and Ning (2016), we present a tight spectral condition for an -connected graph to have a spanning -tree, which extends the result of Fan et al. (2022) from to general . Let be a spanning tree of a connected graph. The leaf degree of is the maximum number of leaves adjacent to in for any . We provide a tight spectral condition for the existence of a spanning tree with leaf degree at most in a connected graph with minimum degree , where is an integer.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.