微封装相变材料浆料(MEPCS)在数据中心闭环热虹吸冷却中的热性能实验与数值研究

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Qi Lin , Ke Hou , Yixuan Li , Jihong Wang , Fuping Qian , Dongdong Wang
{"title":"微封装相变材料浆料(MEPCS)在数据中心闭环热虹吸冷却中的热性能实验与数值研究","authors":"Qi Lin ,&nbsp;Ke Hou ,&nbsp;Yixuan Li ,&nbsp;Jihong Wang ,&nbsp;Fuping Qian ,&nbsp;Dongdong Wang","doi":"10.1016/j.energy.2025.136188","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid cooling with microencapsulated phase change material slurry (MEPCS) provides high energy-efficiency for data center thermal management. However, existing models lack the capacity to accurately capture the phase-change dynamics within intricate systems. To tackle this, the multiscale additional heat source (MAHS) model was developed. Validation against experimental data demonstrates that it achieves remarkable prediction accuracy, with average errors of 1.62 % for pressure drop and 0.42 % for temperature. Results reveal that the concentration has a “double-edged sword” effect. Low-concentration MEPCS (0.1–2 %) enhances heat transfer effectiveness by 1.01–1.05 times via latent heat and micro-convection, while high concentrations (e.g. 15 %) degrade performance due to high-viscosity-induced flow resistance. For a system with 0.1 % MEPCS, the reduction in thermal resistance per unit heating-power increase (1.7–4.3) is significantly greater than that per unit cooling-temperature increase (1.1–2.0). Under critical conditions (26 °C cooling, 20W heating), of the thermosiphon system with 0.1–2 % MEPCS has the thermal resistance as the pure carrier fluid. At higher powers (&gt;20 W), MEPCS shows better chip-cooling heat-flux adaptability due to latent heat and energy density advantages. This study proposes the first validated framework for passive MEPCS-driven cooling, advancing energy-efficient thermal management in high-density computing infrastructures.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"325 ","pages":"Article 136188"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical study on the thermal performance of microencapsulated phase change material slurry (MEPCS) for closed-loop thermosyphon cooling in a data center\",\"authors\":\"Qi Lin ,&nbsp;Ke Hou ,&nbsp;Yixuan Li ,&nbsp;Jihong Wang ,&nbsp;Fuping Qian ,&nbsp;Dongdong Wang\",\"doi\":\"10.1016/j.energy.2025.136188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liquid cooling with microencapsulated phase change material slurry (MEPCS) provides high energy-efficiency for data center thermal management. However, existing models lack the capacity to accurately capture the phase-change dynamics within intricate systems. To tackle this, the multiscale additional heat source (MAHS) model was developed. Validation against experimental data demonstrates that it achieves remarkable prediction accuracy, with average errors of 1.62 % for pressure drop and 0.42 % for temperature. Results reveal that the concentration has a “double-edged sword” effect. Low-concentration MEPCS (0.1–2 %) enhances heat transfer effectiveness by 1.01–1.05 times via latent heat and micro-convection, while high concentrations (e.g. 15 %) degrade performance due to high-viscosity-induced flow resistance. For a system with 0.1 % MEPCS, the reduction in thermal resistance per unit heating-power increase (1.7–4.3) is significantly greater than that per unit cooling-temperature increase (1.1–2.0). Under critical conditions (26 °C cooling, 20W heating), of the thermosiphon system with 0.1–2 % MEPCS has the thermal resistance as the pure carrier fluid. At higher powers (&gt;20 W), MEPCS shows better chip-cooling heat-flux adaptability due to latent heat and energy density advantages. This study proposes the first validated framework for passive MEPCS-driven cooling, advancing energy-efficient thermal management in high-density computing infrastructures.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"325 \",\"pages\":\"Article 136188\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225018304\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225018304","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

使用微胶囊相变材料浆料(MEPCS)进行液体冷却可为数据中心热管理提供高能效。然而,现有模型无法准确捕捉复杂系统内的相变动态。为了解决这个问题,我们开发了多尺度附加热源(MAHS)模型。根据实验数据进行的验证表明,该模型的预测精度非常高,压降平均误差为 1.62%,温度平均误差为 0.42%。结果表明,浓度具有 "双刃剑 "效应。低浓度 MEPCS(0.1%-2%)可通过潜热和微对流将传热效率提高 1.01-1.05 倍,而高浓度(如 15%)则会因高粘度引起的流动阻力而降低性能。对于使用 0.1 % MEPCS 的系统,单位加热功率增加所减少的热阻(1.7-4.3)明显大于单位冷却温度增加所减少的热阻(1.1-2.0)。在临界条件下(26 °C制冷,20W加热),含有0.1-2 % MEPCS的热虹吸系统的热阻与纯载流体相同。在更高功率(20 瓦)下,由于潜热和能量密度的优势,MEPCS 显示出更好的芯片冷却热流适应性。这项研究首次提出了 MEPCS 驱动的被动冷却验证框架,推动了高密度计算基础设施的节能热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical study on the thermal performance of microencapsulated phase change material slurry (MEPCS) for closed-loop thermosyphon cooling in a data center
Liquid cooling with microencapsulated phase change material slurry (MEPCS) provides high energy-efficiency for data center thermal management. However, existing models lack the capacity to accurately capture the phase-change dynamics within intricate systems. To tackle this, the multiscale additional heat source (MAHS) model was developed. Validation against experimental data demonstrates that it achieves remarkable prediction accuracy, with average errors of 1.62 % for pressure drop and 0.42 % for temperature. Results reveal that the concentration has a “double-edged sword” effect. Low-concentration MEPCS (0.1–2 %) enhances heat transfer effectiveness by 1.01–1.05 times via latent heat and micro-convection, while high concentrations (e.g. 15 %) degrade performance due to high-viscosity-induced flow resistance. For a system with 0.1 % MEPCS, the reduction in thermal resistance per unit heating-power increase (1.7–4.3) is significantly greater than that per unit cooling-temperature increase (1.1–2.0). Under critical conditions (26 °C cooling, 20W heating), of the thermosiphon system with 0.1–2 % MEPCS has the thermal resistance as the pure carrier fluid. At higher powers (>20 W), MEPCS shows better chip-cooling heat-flux adaptability due to latent heat and energy density advantages. This study proposes the first validated framework for passive MEPCS-driven cooling, advancing energy-efficient thermal management in high-density computing infrastructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信